• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q. 4

Expert-verified
Calculus
Found in: Page 1095
Calculus

Calculus

Book edition 1st
Author(s) Peter Kohn, Laura Taalman
Pages 1155 pages
ISBN 9781429241861

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Calculus of vector-valued functions: Calculate each of the following.

ddt(r(t)), where r(t)=3cos2ti+5tj+tt2+1k

The value of ddt(r(t))=-6costsinti+5j+1-t2t2+1k

See the step by step solution

Step by Step Solution

Step 1.Given Information

Calculus of vector-valued functions: Calculate each of the following.

ddt(r(t)), where r(t)=3cos2ti+5tj+tt2+1k

Step 2. Now finding the value of ddt(r(t)).

ddt(r(t))=ddt(3cos2ti+5tj+tt2+1k)ddt(r(t))=3ddtcos2ti+5ddttj+ddttt2+1kddt(r(t))=3Ai+5Bj+Ck

Step 3. Firstly find the value of A=ddtcos2t

A=ddtcos2tA=2cost-sintA=-2costsint

Step 4. Now finding the value of B=ddtt

B=ddttB=1

Step 5. Now finding the value of C=ddttt2+1

Applying the quotient rule first, we haveC=ddttt2+1C=ddtt·(t2+1)-t·ddt(t2+1)t2+1C=1·(t2+1)-t·2tt2+1C=t2+1-2t2t2+1C=1-t2t2+1

Step 6 Now putting the value of A,B,C.

ddt(r(t))=3(-2costsint)i+5×1j+1-t2t2+1kddt(r(t))=-6costsinti+5j+1-t2t2+1k

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.