• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q. 21

Expert-verified
Calculus
Found in: Page 880
Calculus

Calculus

Book edition 1st
Author(s) Peter Kohn, Laura Taalman
Pages 1155 pages
ISBN 9781429241861

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Let C be the graph of a vector-valued function r. The plane determined by the vectors T(t0) and B(t0) and containing the point r(t0) is called the rectifying plane for C at r(t0). Find the equation of the rectifying plane to the helix determined by r(t)=(cost,sint,t) when t = π.

x+1=0

See the step by step solution

Step by Step Solution

Step1. Given Information

Consider r(t)=cost,sint,t at t=π2 The objective is to find the equations of the rectifying plane to r(t) at t=π. For this, T(t),N(t) and B(t) should be calculated first. Consider r(t)=cost,sint,tr(t)=sint,cost,1r(t)=sin2t+cos2t+1=2T(t)=r(t)r(t)=sint,cost,12 At t=π,T(t)=T(π)=sinπ,cosπ,12=0,1,12=0,22,22 Thus the unit tangent vector to r(t) at t=π is T(π)=0,22,22T(t)=12cost,sint,0T(t)=12cos2t+12sin2t=12N(t)=T(t)T(t)=12cost,sint,012=cost,sint,0 At t=π,N(t)=N(π)=cosπ,sinπ,0=1,0,0 Thus the principal unit normal vector to r(t) at t=π is 1,0,0B(π)=T(π)×N(π)=ijk02222100=i(0)j22+k22=0,22,22uncaught exception: Invalid chunkin file: /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 68#0 /var/www/html/integration/lib/php/Boot.class.php(769): com_wiris_plugin_impl_HttpImpl_1(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Invalid chunk') #1 /var/www/html/integration/lib/haxe/Http.class.php(532): _hx_lambda->execute('Invalid chunk') #2 /var/www/html/integration/lib/php/Boot.class.php(769): haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Invalid chunk') #3 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(30): _hx_lambda->execute('Invalid chunk') #4 /var/www/html/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Invalid chunk') #5 /var/www/html/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), Object(sys_net_Socket), NULL) #6 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(43): haxe_Http->request(true) #7 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(268): com_wiris_plugin_impl_HttpImpl->request(true) #8 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(307): com_wiris_plugin_impl_RenderImpl->showImage('3012ea183b02056...', NULL, Object(PhpParamsProvider)) #9 /var/www/html/integration/createimage.php(17): com_wiris_plugin_impl_RenderImpl->createImage('" width="0" height="0" role="math" style="max-width: none;" localid="1649571995194"> Consider r(t)=cost,sint,t at t=π2 The objective is to find the equations of the rectifying plane to r(t) at t=π. For this, T(t),N(t) and B(t) should be calculated first. r(t)=et,et,2t at t=0 Consider r(t)=cost,sint,tr(t)=sint,cost,1r(t)=sin2t+cos2t+1=2T(t)=r(t)r(t)=sint,cost,12 At t=π,T(t)=T(π)=sinπ,cosπ,12=0,1,12=0,22,22Thus the unit tangent vector tor(t)att=π isT(π)=0,22,22T(t)=12cost,sint,0T(t)=12cos2t+12sin2t=12N(t)=T(t)T(t)=12cost,sint,012=cost,sint,0 At t=π,N(t)=N(π)=cosπ,sinπ,0=1,0,0 Thus the principal unit normal vector to r(t) at t=π is 1,0,0B(π)=T(π)×N(π)=ijk02222100=i(0)j22+k22=0,22,22uncaught exception: Invalid chunkin file: /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 68#0 /var/www/html/integration/lib/php/Boot.class.php(769): com_wiris_plugin_impl_HttpImpl_1(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Invalid chunk') #1 /var/www/html/integration/lib/haxe/Http.class.php(532): _hx_lambda->execute('Invalid chunk') #2 /var/www/html/integration/lib/php/Boot.class.php(769): haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Invalid chunk') #3 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(30): _hx_lambda->execute('Invalid chunk') #4 /var/www/html/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Invalid chunk') #5 /var/www/html/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), Object(sys_net_Socket), NULL) #6 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(43): haxe_Http->request(true) #7 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(268): com_wiris_plugin_impl_HttpImpl->request(true) #8 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(307): com_wiris_plugin_impl_RenderImpl->showImage('c83cb95b9d1d76b...', NULL, Object(PhpParamsProvider)) #9 /var/www/html/integration/createimage.php(17): com_wiris_plugin_impl_RenderImpl->createImage('" width="0" height="0" role="math" style="max-width: none;" localid="1649572366709"> Consider r(t)=cost,sint,t at t=π2 The objective is to find the equations of the rectifying plane to r(t) at t=π. For this, T(t),N(t) and B(t) should be calculated first. r(t)=et,et,2t at t=0 Consider r(t)=cost,sint,tr(t)=sint,cost,1r(t)=sin2t+cos2t+1=2T(t)=r(t)r(t)=sint,cost,12 At t=π,T(t)=T(π)=sinπ,cosπ,12=0,1,12=0,22,22

Thus the unit tangent vector to r(t) at t=π is T(π)=0,22,22T(t)=12cost,sint,0T(t)=12cos2t+12sin2t=12N(t)=T(t)T(t)=12cost,sint,012=cost,sint,0 At t=π,N(t)=N(π)=cosπ,sinπ,0=1,0,0 Thus the principal unit normal vector to r(t) at t=π is 1,0,0B(π)=T(π)×N(π)=ijk02222100=i(0)j22+k22=0,22,22

Step2. Rectifying plane

The plane determined by the vectors Tt0 and Bt0 containing the point rt0 is called the rectifying plane for C at rt0. Thus the equation of the rectifying plane to r(t) at t=π is (T(π)×B(π))xx(π),yy(π),zz(π)=0 First computing T(π)×B(π) :

=ijk0222202222=ijk0222202222

Evaluating (T(π)×B(π))xx(π),yy(π),zz(π)=01,0,0x+1,y,zπ=01(x+1)=0x+1=0 Thus the equation of the rectifying plane to r(t) at t=π is x+1=0

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.