StudySmarter AI is coming soon!

- :00Days
- :00Hours
- :00Mins
- 00Seconds

A new era for learning is coming soonSign up for free

Suggested languages for you:

Americas

Europe

Q 38.

Expert-verifiedFound in: Page 801

Book edition
1st

Author(s)
Peter Kohn, Laura Taalman

Pages
1155 pages

ISBN
9781429241861

In Exercises 37–42, find $||\mathit{v}||$ and find the unit vector in the direction of **v.**

$\mathit{v}=>">\sqrt{\frac{1}{3}},-\sqrt{\frac{2}{3}}$

$||\mathit{v}||=1$ and the unit vector in the direction of **v **is $>">\sqrt{\frac{1}{3}},-\sqrt{\frac{2}{3}}$.

The given vector is:

$\mathit{v}=>">\sqrt{\frac{1}{3}},-\sqrt{\frac{2}{3}}$

$\mathit{v}=>">\sqrt{\frac{1}{3}},-\sqrt{\frac{2}{3}}$

Therefore, the norm of the given vector is 1.

The unit vector in the direction of **v **is the vector:

$\frac{1}{||\mathit{v}||}\mathit{v}=\frac{1}{1}>">\sqrt{\frac{1}{3}},-\sqrt{\frac{2}{3}}$

Therefore, the unit vector in the direction of $\mathit{v}=>">\sqrt{\frac{1}{3}},-\sqrt{\frac{2}{3}}$ is $>">\sqrt{\frac{1}{3}},-\sqrt{\frac{2}{3}}$.

94% of StudySmarter users get better grades.

Sign up for free