• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q4E

Expert-verified
Discrete Mathematics and its Applications
Found in: Page 549
Discrete Mathematics and its Applications

Discrete Mathematics and its Applications

Book edition 7th
Author(s) Kenneth H. Rosen
Pages 808 pages
ISBN 9780073383095

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Find a closed form for the generating function for each of these sequences. (Assume a general form for the terms of the sequence, using the most obvious choice of such a sequence.)

a) \( - 1, - 1, - 1, - 1, - 1, - 1, - 1,0,0,0,0,0,0, \ldots \)

b) \(1,3,9,27,81,243,729, \ldots \)

c) \(0,0,3, - 3,3, - 3,3, - 3, \ldots \)

d) \(1,2,1,1,1,1,1,1,1, \ldots \)

e) \(\left( {\begin{array}{*{20}{l}}7\\0\end{array}} \right),2\left( {\begin{array}{*{20}{l}}7\\1\end{array}} \right),{2^2}\left( {\begin{array}{*{20}{l}}7\\2\end{array}} \right), \ldots ,{2^7}\left( {\begin{array}{*{20}{l}}7\\7\end{array}} \right),0,0,0,0, \ldots \)

f) \( - 3,3, - 3,3, - 3,3, \ldots \)

g) \(0,1, - 2,4, - 8,16, - 32,64, \ldots \)

h) \(1,0,1,0,1,0,1,0, \ldots \)

(a) The required result is\( - \frac{{1 - {x^7}}}{{1 - x}}\).

(b) The required result is\(\frac{1}{{1 - 3x}}\).

(c) The required result is\(\frac{{3{x^2}}}{{1 + x}}\).

(d) The required result is\(x + \frac{1}{{1 - x}}\).

(e) The required result is\({(1 + 2x)^7}\).

(f) The required result is\(\frac{{ - 3}}{{1 + x}}\).

(g) The required result is\(\frac{x}{{1 + 2x}}\).

(h) The required result is\(\frac{1}{{1 - {x^2}}}\).

See the step by step solution

Step by Step Solution

Step 1: Formula of generating function

Generating function for the sequence \({a_0},{a_1}, \ldots ,{a_k}\)of real numbers is the infinite series

\(G(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_k}{x^k} + \ldots = \sum\limits_{k = 0}^{ + \infty } {{a_k}} {x^k}\)

Step 2: Use the definition of a generating function and solve the sequence

For the sequence:

\( - 1, - 1, - 1, - 1, - 1, - 1, - 1,0,0,0,0,0,0, \ldots \)

Use the formula for generating function:

\[\begin{array}{l}G(x) = - 1 - x - {x^2} - \ldots - {x^6} + 0{x^7} + 0{x^8} + \ldots \\G(x) = - 1 - x - {x^2} - \ldots - {x^6}\\G(x) = - \sum\limits_{k = 0}^6 {{x^k}} \\G(x) = - \frac{{1 - {x^7}}}{{1 - x}}\end{array}\]

Step 3: Use the definition of a generating function and solve the sequence

For the sequence:

\(1,3,9,27,81,243,729, \ldots \)

Use the formula for generating function:

\(\begin{array}{l}G(x) = 1 + 3x + 9{x^2} + 27{x^3} + 81{x^4} + 243{x^5} + 729{x^6} + ..\\G(x) = {3^0} + {3^1}x + {3^2}{x^2} + {3^3}{x^3} + {3^4}{x^4} + {3^5}{x^5} + {3^6}{x^6} + \ldots \\G(x) = \sum\limits_{k = 0}^{ + \infty } {{{(3x)}^k}} \\G(x) = \frac{1}{{1 - 3x}}\end{array}\)

Step 4: Use the definition of a generating function and solve the sequence

For the sequence:

\(0,0,3, - 3,3, - 3,3, - 3, \ldots \)

Use the formula for generating function:

\(\begin{array}{l}G(x) = 0 + 0x + 3{x^2} - 3{x^3} + 3{x^4} - 3{x^5} + 3{x^6} + \ldots \\G(x) = 3{( - 1)^2}{x^2} + 3{( - 1)^3}{x^3} + 3{( - 1)^4}{x^4} + 3{( - 1)^5}{x^5} + 3{( - 1)^6}{x^6} + \ldots \\G(x) = \sum\limits_{k = 2}^{ + \infty } 3 {( - 1)^k}{x^k}\end{array}\)

\(\begin{array}{l}G(x) = 3{x^2} \cdot \frac{1}{{1 - ( - x)}}\\G(x) = \frac{{3{x^2}}}{{1 + x}}\end{array}\)

Step 5: Use the definition of a generating function and solve the sequence

For the sequence:

\(1,2,1,1,1,1,1,1,1, \ldots \)

Use the formula for generating function:

\(\begin{array}{l}G(x) = 1 + 2x + 1{x^2} + 1{x^3} + 1{x^4} + 1{x^5} + \ldots \\G(x) = 1 + 2x + {x^2} + {x^3} + {x^4} + {x^5} + \ldots \\G(x) = x + \left( {1 + x + {x^2} + {x^3} + {x^4} + {x^5} + \ldots } \right)\end{array}\)

\(\begin{array}{l}G(x) = x + \sum\limits_{k = 0}^{ + \infty } {{x^k}} \\G(x) = x + \frac{1}{{1 - x}}\end{array}\)

Step 6: Use the definition of a generating function and solve the sequence

For the sequence:

\(\left( {\begin{array}{*{20}{l}}7\\0\end{array}} \right),2\left( {\begin{array}{*{20}{l}}7\\1\end{array}} \right),{2^2}\left( {\begin{array}{*{20}{l}}7\\2\end{array}} \right), \ldots ,{2^7}\left( {\begin{array}{*{20}{l}}7\\7\end{array}} \right),0,0,0,0, \ldots \)

Use the formula for generating function:

\(G(x) = \left( {\begin{array}{*{20}{l}}7\\0\end{array}} \right) + 2\left( {\begin{array}{*{20}{l}}7\\1\end{array}} \right)x + {2^2}\left( {\begin{array}{*{20}{l}}7\\2\end{array}} \right){x^2} + {2^3}\left( {\begin{array}{*{20}{l}}7\\3\end{array}} \right){x^3} + {2^4}\left( {\begin{array}{*{20}{l}}7\\4\end{array}} \right){x^4} + {2^5}\left( {\begin{array}{*{20}{l}}7\\5\end{array}} \right){x^5} + {2^6}\left( {\begin{array}{*{20}{l}}7\\6\end{array}} \right){x^6} + {2^7}\left( {\begin{array}{*{20}{l}}7\\7\end{array}} \right){x^7} + 0{x^8} + 0{x^9} + \ldots .\)

\(G(x) = \left( {\begin{array}{*{20}{l}}7\\0\end{array}} \right) + \left( {\begin{array}{*{20}{l}}7\\1\end{array}} \right)2x + \left( {\begin{array}{*{20}{l}}7\\2\end{array}} \right){(2x)^2} + \left( {\begin{array}{*{20}{l}}7\\3\end{array}} \right){(2x)^3} + \left( {\begin{array}{*{20}{l}}7\\4\end{array}} \right){(2x)^4} + \left( {\begin{array}{*{20}{l}}7\\5\end{array}} \right){(2x)^5} + \left( {\begin{array}{*{20}{l}}7\\6\end{array}} \right){(2x)^6} + \left( {\begin{array}{*{20}{l}}7\\7\end{array}} \right){(2x)^7}\)

\(G(x) = \sum\limits_{k = 0}^7 {\left( {\begin{array}{*{20}{l}}7\\k\end{array}} \right)} {(2x)^k}\)

\(G(x) = {(1 + 2x)^7}\)

Step 7: Use the definition of a generating function and solve the sequence

For the sequence:

\( - 3,3, - 3,3, - 3,3, \ldots \)

Use the formula for generating function:

\(\begin{array}{l}G(x) = - 3 + 3x - 3{x^2} + 3{x^3} - 3{x^4} + 3{x^5} + \ldots \\G(x) = 3{( - 1)^1} + 3{( - 1)^2}x + 3{( - 1)^3}{x^2} + 3{( - 1)^4}{x^3} + 3{( - 1)^5}{x^4} + 3{( - 1)^6}{x^5} + \ldots \\G(x) = \sum\limits_{k = 0}^{ + \infty } 3 \cdot {( - 1)^{k + 1}}{x^k}\\G(x) = - 3\sum\limits_{k = 0}^{ + \infty } {{{( - x)}^k}} \end{array}\)

\(\begin{array}{l}G(x) = - 3 \cdot \frac{1}{{1 - ( - x)}}\\G(x) = \frac{{ - 3}}{{1 + x}}\end{array}\)

Step 8: Use the definition of a generating function and solve the sequence

For the sequence:

\(0,1, - 2,4, - 8,16, - 32,64, \ldots \)

Use the formula for generating function:

\(\begin{array}{l}G(x) = 0 + 1x - 2{x^2} + 4{x^3} - 8{x^4} + 16{x^5} + \ldots \\G(x) = {( - 2)^0}x + {( - 2)^1}{x^2} + {( - 2)^2}{x^3} + {( - 2)^3}{x^4} + {( - 2)^4}{x^5} + \ldots \\G(x) = \sum\limits_{k = 1}^{ + \infty } {{{( - 2)}^{k - 1}}} {x^k}\end{array}\)

\(\begin{array}{l}G(x) = x\sum\limits_{k = 0}^{ + \infty } {{{( - 2x)}^k}} \\G(x) = x \cdot \frac{1}{{1 - ( - 2x)}}\\G(x) = \frac{x}{{1 + 2x}}\end{array}\)

Step 9: Use the definition of a generating function and solve the sequence

For the sequence:

\(1,0,1,0,1,0,1,0, \ldots \)

Use the formula for generating function:

\(\begin{array}{l}G(x) = 1 + 0x + 1{x^2} + 0{x^3} + 1{x^4} + 0{x^5} + \ldots \\G(x) = 1 + {x^2} + {x^4} + {x^6} + \ldots \\G(x) = \sum\limits_{k = 0}^{ + \infty } {{x^{2k}}} \end{array}\)

\(\begin{array}{l}G(x) = \sum\limits_{k = 0}^{ + \infty } {{{\left( {{x^2}} \right)}^k}} \\G(x) = \frac{1}{{1 - {x^2}}}\end{array}\)

Most popular questions for Math Textbooks

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.