• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q7E

Expert-verified
Discrete Mathematics and its Applications
Found in: Page 549
Discrete Mathematics and its Applications

Discrete Mathematics and its Applications

Book edition 7th
Author(s) Kenneth H. Rosen
Pages 808 pages
ISBN 9780073383095

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

For each of these generating functions, provide a closed formula for the sequence it determines.

a) \({(3x - 4)^3}\)

b) \({\left( {{x^3} + 1} \right)^3}\)

c) \(1/(1 - 5x)\)

d) \({x^3}/(1 + 3x)\)

e) \({x^2} + 3x + 7 + \left( {1/\left( {1 - {x^2}} \right)} \right)\)

f) \(\left( {{x^4}/\left( {1 - {x^4}} \right)} \right) - {x^3} - {x^2} - x - 1\)

g) \({x^2}/{(1 - x)^2}\)

h) \(2{e^{2x}}\)

(a) The required result is\({a_0} = - 64,{a_1} = 144,{a_2} = - 108,{a_3} = 27,{a_n} = 0\) when\(n \ge 4\).

(b) The required result is\({a_0} = 1,{a_3} = 3,{a_6} = 3,{a_9} = 1,{a_n} = 0\) when \(n = 1,2,4,5,7,8\) and\(n \ge 10\).

(c) The required result is\({a_n} = {5^n},n = 0,1,2, \ldots \)

(d) The required result is\({a_0} = 0,{a_1} = 0,{a_2} = 0,{a_n} = {( - 3)^{n - 3}},n = 3,4,5, \ldots \)

(e) The required result is\({a_0} = 8,{a_1} = 3,{a_2} = 2,{a_n} = 1\) when \(n\) even and \(n > 2,{a_n} = 0\) otherwise.

(f) The required result is\({a_0} = - 1,{a_1} = - 1,{a_2} = - 1,{a_3} = - 1,{a_n} = 1\) when \(n\) is a multiple of 4 and \(n \ge 4,{a_n} = 0\) otherwise.

(g) The required result is\({a_0} = {a_1} = 0,{a_n} = n - 1\) when\(n \ge 2\).

(h) The required result is\({a_n} = \frac{{{2^{n + 1}}}}{{n!}},n = 0,1,2, \ldots \)

See the step by step solution

Step by Step Solution

Step 1: Formula of generating function and binomial theorem

Generating function for the sequence \({a_0},{a_1}, \ldots ,{a_k}\)of real numbers is the infinite series

\(G(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_k}{x^k} + \ldots = \sum\limits_{k = 0}^{ + \infty } {{a_k}} {x^k}\)

Binomial theorem:

\({(x + y)^n} = \sum\limits_{j = 0}^n {\left( {\begin{array}{*{20}{l}}n\\j\end{array}} \right)} {x^{n - j}}{y^j}\)

Step 2: Use the definition of a generating function and binomial theorem to solve the sequence

For the sequence:

\({(3x - 4)^3}\)

Use binomial theorem:

\(\begin{array}{l}{(3x - 4)^3} = {(3x + ( - 4))^3}\\{(3x - 4)^3} = \left( {\begin{array}{*{20}{l}}3\\0\end{array}} \right){(3x)^{3 - 0}}{( - 4)^0} + \left( {\begin{array}{*{20}{l}}3\\1\end{array}} \right){(3x)^{3 - 1}}{( - 4)^1} + \left( {\begin{array}{*{20}{l}}3\\2\end{array}} \right){(3x)^{3 - 2}}{( - 4)^2} + \left( {\begin{array}{*{20}{l}}3\\3\end{array}} \right){(3x)^{3 - 3}}{( - 4)^3}\\{(3x - 4)^3} = 27{x^3} - 108{x^2} + 144x - 64\end{array}\)

The generating function is of the form:

\(\begin{array}{l}G(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_k}{x^k} + \ldots \\G(x) = \sum\limits_{k = 0}^{ + \infty } {{a_k}} {x^k}\end{array}\)

\(\begin{array}{l}{a_0} = - 64\\{a_1} = 144\\{a_2} = - 108\end{array}\)

\(\begin{array}{l}{a_3} = 27\\{a_n} = 0{\rm{ when }}n \ge 4\end{array}\)

Step 3: Use the definition of a generating function and binomial theorem to solve the sequence

For the sequence:

\({\left( {{x^3} + 1} \right)^3}\)

Use the binomial theorem:

\(\begin{array}{l}{\left( {{x^3} + 1} \right)^3} = \left( {\begin{array}{*{20}{l}}3\\0\end{array}} \right){\left( {{x^3}} \right)^{3 - 0}}{(1)^0} + \left( {\begin{array}{*{20}{l}}3\\1\end{array}} \right){\left( {{x^3}} \right)^{3 - 1}}{(1)^1} + \left( {\begin{array}{*{20}{l}}3\\2\end{array}} \right){\left( {{x^3}} \right)^{3 - 2}}{(1)^2} + \left( {\begin{array}{*{20}{l}}3\\3\end{array}} \right){\left( {{x^3}} \right)^{3 - 3}}{(1)^3}\\{\left( {{x^3} + 1} \right)^3} = {x^9} + 3{x^6} + 3{x^3} + 1\end{array}\)

The generating function is of the form:

\(\begin{array}{l}G(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_k}{x^k} + \ldots \\G(x) = \sum\limits_{k = 0}^{ + \infty } {{a_k}} {x^k}\end{array}\)

\({a_0} = 1\)

\({a_3} = 3\)

\({a_6} = 3\)

\({a_9} = 1\)

\({a_n} = 0\) when \(n = 1,2,4,5,7,8\) and \(n \ge 10\)

Step 4: Use the definition of a generating function and binomial theorem to solve the sequence

For the sequence:

\(1/(1 - 5x)\)

Use the fact: \(\sum\limits_{k = 0}^{ + \infty } {{x^k}} = \frac{1}{{1 - x}}\)

\(\begin{array}{l}\frac{1}{{1 - 5x}} = \sum\limits_{k = 0}^{ + \infty } {{{(5x)}^k}} \\\frac{1}{{1 - 5x}} = \sum\limits_{k = 0}^{ + \infty } {{5^k}} {x^k}\end{array}\)

The generating function is of the form:

\(\begin{array}{l}G(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_k}{x^k} + \ldots \\G(x) = \sum\limits_{k = 0}^{ + \infty } {{a_k}} {x^k}\end{array}\)

\(\begin{array}{l}{a_n} = {5^n}\\n = 0,1,2, \ldots \end{array}\)

Step 5: Use the definition of a generating function and binomial theorem to solve the sequence

For the sequence:

\({x^3}/(1 + 3x)\)

Use the fact: \(\sum\limits_{k = 0}^{ + \infty } {{x^k}} = \frac{1}{{1 - x}}\)

\(\frac{{{x^3}}}{{1 + 3x}} = {x^3} \cdot \frac{1}{{1 - ( - 3x)}}\)

\(\frac{{{x^3}}}{{1 + 3x}} = \sum\limits_{m = 3}^{ + \infty } {{{( - 3)}^{m - 3}}{x^m}} \)

The generating function is of the form:

\(\begin{array}{l}G(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_k}{x^k} + \ldots \\G(x) = \sum\limits_{k = 0}^{ + \infty } {{a_k}} {x^k}\end{array}\)

\(\begin{array}{l}{a_0} = 0\\{a_1} = 0\\{a_2} = 0\end{array}\)

\(\begin{array}{l}{a_n} = {( - 3)^{n - 3}}\,\\n = 3,4,5, \ldots \end{array}\)

Step 6: Use the definition of a generating function and binomial theorem to solve the sequence

For the sequence:

\({x^2} + 3x + 7 + \left( {1/\left( {1 - {x^2}} \right)} \right)\)

Use the fact: \(\sum\limits_{k = 0}^{ + \infty } {{x^k}} = \frac{1}{{1 - x}}\)

\({x^2} + 3x + 7 + \frac{1}{{1 - {x^2}}} = {x^2} + 3x + 7 + \sum\limits_{k = 0}^{ + \infty } {{{\left( {{x^2}} \right)}^k}} \)

\({x^2} + 3x + 7 + \frac{1}{{1 - {x^2}}} = 8 + 3x + 2{x^2} + \sum\limits_{k = 2}^{ + \infty } {{x^{2k}}} \)

The generating function is of the form:

\(\begin{array}{l}G(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_k}{x^k} + \ldots \\G(x) = \sum\limits_{k = 0}^{ + \infty } {{a_k}} {x^k}\end{array}\)

\({a_0} = 8\)

\({a_1} = 3\)

\({a_2} = 2\)

\({a_n} = 1\) when \(n\) even and\(n > 2\).

\({a_n} = 0\) otherwise.

Step 7: Use the definition of a generating function and binomial theorem to solve the sequence

For the sequence:

\(\left( {{x^4}/\left( {1 - {x^4}} \right)} \right) - {x^3} - {x^2} - x - 1\)

Use the fact: \(\sum\limits_{k = 0}^{ + \infty } {{x^k}} = \frac{1}{{1 - x}}\)

\(\frac{{{x^4}}}{{1 - {x^4}}} - {x^3} - {x^2} - x - 1 = {x^4} \cdot \frac{1}{{1 - {x^4}}} - {x^3} - {x^2} - x - 1\)

\(\frac{{{x^4}}}{{1 - {x^4}}} - {x^3} - {x^2} - x - 1 = - 1 - x - {x^2} - {x^3} + \sum\limits_{m = 1}^{ + \infty } {{x^{4m}}} \)

The generating function is of the form:

\(\begin{array}{l}G(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_k}{x^k} + \ldots \\G(x) = \sum\limits_{k = 0}^{ + \infty } {{a_k}} {x^k}\end{array}\)

\({a_0} = - 1\)

\({a_1} = - 1\)

\({a_2} = - 1\)

\({a_3} = - 1\)

\({a_n} = 1\) when \(n\) is a multiple of 4 and\(n \ge 4\).

\({a_n} = 0\) otherwise.

Step 8: Use the definition of a generating function and binomial theorem to solve the sequence

For the sequence:

\({x^2}/{(1 - x)^2}\)

Use the fact: \(\sum\limits_{k = 0}^{ + \infty } {{x^k}} = \frac{1}{{1 - x}}\)

\(\frac{{{x^2}}}{{{{(1 - x)}^2}}} = {x^2} \cdot \frac{1}{{{{(1 - x)}^2}}}\)

\(\frac{{{x^2}}}{{{{(1 - x)}^2}}} = \sum\limits_{m = 2}^{ + \infty } {(m - 1)} {x^m}\)

The generating function is of the form:

\(\begin{array}{l}G(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_k}{x^k} + \ldots \\G(x) = \sum\limits_{k = 0}^{ + \infty } {{a_k}} {x^k}\end{array}\)

\({a_0} = {a_1} = 0\)

\({a_n} = n - 1\) when\(n \ge 2\).

Step 9: Use the definition of a generating function and binomial theorem to solve the sequence

For the sequence:

\(2{e^{2x}}\)

Use the fact: \(\sum\limits_{k = 0}^{ + \infty } {{x^k}} = \frac{1}{{1 - x}}\)

\(\begin{array}{l}2{e^{2x}} = 2\sum\limits_{k = 0}^{ + \infty } {\frac{{{{(2x)}^k}}}{{k!}}} \\2{e^{2x}} = 2\sum\limits_{k = 0}^{ + \infty } {\frac{{{2^k}}}{{k!}}} \cdot {x^k}\\2{e^{2x}} = \sum\limits_{k = 0}^{ + \infty } {\frac{{{2^{k + 1}}}}{{k!}}} \cdot {x^k}\end{array}\)

The generating function is of the form:

\(\begin{array}{l}G(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_k}{x^k} + \ldots \\G(x) = \sum\limits_{k = 0}^{ + \infty } {{a_k}} {x^k}\end{array}\)

\(\begin{array}{l}{a_n} = \frac{{{2^{n + 1}}}}{{n!}}\\n = 0,1,2, \ldots \end{array}\)

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.