Americas
Europe
Q8E
Expert-verifiedSuppose that when is an even positive integer, and . Find
a)
b).
c).
d).
The answers are given below:
(a)
(b)
(c)
(d)
A recurrence relation is an equation that recursively defines a sequence where the next term is a function of the previous terms:
Given:\(f(n) = 2f(n/2) + 3\,{\rm{and}}\,f(1) = 5\)
(a) Repeatedly apply the recurrence relation until we obtain \(n = 3\) :
\(\begin{aligned}f(2) &= 2f(1) + 3\\ &= 2(5) + 3\\ &= 13\end{aligned}\)
(b) Repeatedly apply the recurrence relation until we obtain \(n = 8\) :
\(\begin{aligned} f(4) &= 2f(2) + 3\\ &= 2(13) + 3\\ &= 29\\f(8) &= 2f(4) + 3\\ &= 2(29) + 3\\& = 61\end{aligned}\)
(c) Repeatedly apply the recurrence relation until we obtain \(n = 64\) :
\(\begin{aligned}f(16) &= 2f(8) + 3\\f(16) &= 2(61) + 3\\ &= 125\\f(32) &= 2f(16) + 3\\ &= 2(125) + 3\\ &= 253\\f(64) &= 2f(32) + 3\\ &= 2(253) + 3\\ &= 509\end{aligned}\)
(d) Repeatedly apply the recurrence relation until we obtain\(n = 1024\):
\(\begin{aligned}f(128) &= 2f(64) + 3\\ &= 2(509) + 3\\ &= 1021\\f(256) &= 2f(128) + 3\\& = 2(1021) + 3\\ &= 2045\\f(512) &= 2f(256) + 3\\ &= 2(2045) + 3\\ &= 4093\\f(1024) &= 2f(512) + 3\\ &= 2(4093) + 3\\ &= 8189\end{aligned}\)
94% of StudySmarter users get better grades.
Sign up for free