• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q9E

Expert-verified
Discrete Mathematics and its Applications
Found in: Page 549
Discrete Mathematics and its Applications

Discrete Mathematics and its Applications

Book edition 7th
Author(s) Kenneth H. Rosen
Pages 808 pages
ISBN 9780073383095

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Find the coefficient of \({x^{10}}\) in the power series of each of these functions.

a) \({\left( {1 + {x^5} + {x^{10}} + {x^{15}} + \cdots } \right)^3}\)

b) \({\left( {{x^3} + {x^4} + {x^5} + {x^6} + {x^7} + \cdots } \right)^3}\)

c) \(\left( {{x^4} + {x^5} + {x^6}} \right)\left( {{x^3} + {x^4} + {x^5} + {x^6} + {x^7}} \right)(1 + x + \left. {{x^2} + {x^3} + {x^4} + \cdots } \right)\)

d) \(\left( {{x^2} + {x^4} + {x^6} + {x^8} + \cdots } \right)\left( {{x^3} + {x^6} + {x^9} + } \right. \cdots \left( {{x^4} + {x^8} + {x^{12}} + \cdots } \right)\)

e) \(\left( {1 + {x^2} + {x^4} + {x^6} + {x^8} + \cdots } \right)\left( {1 + {x^4} + {x^8} + {x^{12}} + } \right. \cdots )\left( {1 + {x^6} + {x^{12}} + {x^{18}} + \cdots } \right)\)

The coefficient of \({x^{10}}\) in the power series of each of these functions is given below;

(a) 6

(b) 3

(c) 9

(d) 0

(e) 5

See the step by step solution

Step by Step Solution

a).Step 1: UseExtended Binomial Theorem:

The Extended Binomial Theorem: Let \(x\) be a real number with \(|x| < 1\) and let \(u\) be a real number. Then

\({(1 + x)^u} = \sum\limits_{k = 0}^\infty {\left( {\begin{array}{*{20}{l}}u\\k\end{array}} \right)} {x^k}\)

\(\begin{array}{c}{\left( {1 + {x^5} + {x^{10}} + {x^{15}} + \ldots } \right)^3} = {\left( {{x^{5(0)}} + {x^{5(1)}} + {x^{5(2)}} + {x^{5(3)}} + \ldots } \right)^3}\\ = {\left( {\sum\limits_{k = 0}^{ + \infty } {{x^{5k}}} } \right)^3}\\ = {\left( {\sum\limits_{k = 0}^{ + \infty } {{{\left( {{x^5}} \right)}^k}} } \right)^3}\\ = {\left( {\frac{1}{{1 - {x^5}}}} \right)^3}\\ = {\left( {1 + \left( { - {x^5}} \right)} \right)^{ - 3}}\\ = \sum\limits_{k = 0}^{ + \infty } {( - 3)} {\left( { - {x^5}} \right)^k}\\ = \sum\limits_{k = 0}^{ + \infty } {\left( {\begin{array}{*{20}{c}}{ - 3}\\k\end{array}} \right)} {( - 1)^k}{x^{5k}}\end{array}\)

Step 2: The coefficient of \({x^{10}}\) is then the case\(k = 2\):

\(\begin{array}{c}{a_{5k}} = \left( {\begin{array}{*{20}{c}}{ - 3}\\k\end{array}} \right){( - 1)^k}\\{a_{10}} = \left( {\begin{array}{*{20}{c}}{ - 3}\\2\end{array}} \right){( - 1)^2}\\ = \frac{{( - 3)( - 4)}}{{2!}}\\ = \frac{{12}}{2}\\ = 6\end{array}\)

Thus, the coefficient of \({x^{10}}\) is 6.

b).

Step 3: UseExtended Binomial Theorem:

\(\begin{array}{c}{\left( {{x^3} + {x^4} + {x^5} + \ldots } \right)^3} = {\left( {{x^3}} \right)^3}{\left( {{x^0} + {x^1} + {x^2} + {x^3} + \ldots } \right)^3}\\ = {x^9} \cdot {\left( {\sum\limits_{k = 0}^{ + \infty } {{x^k}} } \right)^3}\\ = {x^9} \cdot {\left( {\frac{1}{{1 - x}}} \right)^3}\\ = {x^9} \cdot {(1 + ( - x))^{ - 3}}\\ = {x^9} \cdot \sum\limits_{k = 0}^{ + \infty } {\left( {\begin{array}{*{20}{c}}{ - 3}\\k\end{array}} \right)} {( - x)^k}\\ = \sum\limits_{k = 0}^{ + \infty } {\left( {\begin{array}{*{20}{c}}{ - 3}\\k\end{array}} \right)} {( - 1)^k}{x^{k + 9}}\end{array}\)

Step 4: The coefficient of \({x^{10}}\) is then the case \(k = 1\) :

\(\begin{array}{c}{a_{k + 9}} = \left( {\begin{array}{*{20}{c}}{ - 3}\\k\end{array}} \right){( - 1)^k}\\{a_{10}} = \left( {\begin{array}{*{20}{c}}{ - 3}\\1\end{array}} \right){( - 1)^1}\\ = - \frac{{( - 3)}}{{1!}}\\ = 3\end{array}\)

Thus, the coefficient of \({x^{10}}\) is 3

c).

Step 5: UseExtended Binomial Theorem:

\(\begin{array}{c}\left( {{x^4} + {x^5} + {x^6}} \right)\left( {{x^3} + {x^4} + {x^5} + {x^6} + {x^7}} \right)\left( {1 + x + {x^2} + {x^3} + {x^4} + \ldots } \right)\\ = {x^4}\left( {1 + x + {x^2}} \right)\left( {{x^3}} \right)\left( {1 + x + {x^2} + {x^3} + {x^4}} \right)\left( {1 + x + {x^2} + {x^3} + {x^4} + \ldots } \right)\\ = {x^7} \cdot \sum\limits_{k = 0}^2 {{x^k}} \cdot \sum\limits_{k = 0}^4 {{x^k}} \cdot \sum\limits_{k = 0}^{ + \infty } {{x^k}} \\ = {x^7} \cdot \sum\limits_{k = 0}^2 {{x^k}} \cdot \sum\limits_{k = 0}^4 {{x^k}} \cdot \frac{1}{{1 - x}}\\ = {x^7} \cdot \frac{{1 - {x^3}}}{{1 - x}} \cdot \frac{{1 - {x^5}}}{{1 - x}} \cdot \frac{1}{{1 - x}}\end{array}\)

By further simplification

\(\begin{array}{c} = \frac{{{x^7}\left( {1 - {x^3}} \right)\left( {1 - {x^5}} \right)}}{{{{(1 - x)}^3}}}\\ = \frac{{{x^7}\left( {1 - {x^3} - {x^5} + {x^8}} \right)}}{{{{(1 - x)}^3}}}\\ = \left( {{x^7} - {x^{10}} - {x^{12}} + {x^{15}}} \right) \cdot {(1 + ( - x))^{ - 3}}\\ = \left( {{x^7} - {x^{10}} - {x^{12}} + {x^{15}}} \right) \cdot \sum\limits_{k = 0}^{ + \infty } {\left( {\begin{array}{*{20}{c}}{ - 3}\\k\end{array}} \right)} {( - x)^k}\end{array}\)

By further simplification

\(\begin{array}{c} = \sum\limits_{k = 0}^{ + \infty } {\left( {\begin{array}{*{20}{c}}{ - 3}\\k\end{array}} \right)} {( - 1)^k}{x^{k + 7}} - \sum\limits_{k = 0}^{ + \infty } {\left( {\begin{array}{*{20}{c}}{ - 3}\\k\end{array}} \right)} {( - 1)^k}{x^{k + 10}}\\ - \sum\limits_{k = 0}^{ + \infty } {\left( {\begin{array}{*{20}{c}}{ - 3}\\k\end{array}} \right)} {( - 1)^k}{x^{k + 12}} + \sum\limits_{k = 0}^{ + \infty } {\left( {\begin{array}{*{20}{c}}{ - 3}\\k\end{array}} \right)} {( - 1)^k}{x^{k + 15}}\end{array}\)

Step 6: The coefficient of \({x^{10}}\) is then the case \(k = 3\) in the first summation and the case \(k = 0\) in the second summation:

\(\begin{array}{c}{a_{10}} = \left( {\begin{array}{*{20}{c}}{ - 3}\\3\end{array}} \right){( - 1)^3} - \left( {\begin{array}{*{20}{c}}{ - 3}\\0\end{array}} \right){( - 1)^0}\\ = - \frac{{( - 3)( - 4)( - 5)}}{{3!}} - 1\\ = 10 - 1\\ = 9\end{array}\)

d).

Step 7: Use Extended Binomial Theorem:

\(\begin{array}{c}\left( {{x^2} + {x^4} + {x^6} + \ldots } \right)\left( {{x^3} + {x^6} + {x^9} + \ldots } \right)\left( {{x^4} + {x^8} + {x^{12}} + \ldots } \right)\\ = {x^2}\left( {1 + {x^2} + {x^4} + \ldots } \right)\left( {{x^3}} \right)\left( {1 + {x^3} + {x^6} + \ldots } \right)\left( {{x^4}} \right)\left( {1 + {x^4} + {x^8} + \ldots } \right)\\ = {x^9} \cdot \sum\limits_{k = 0}^{ + \infty } {{x^{2k}}} \cdot \sum\limits_{k = 0}^{ + \infty } {{x^{3k}}} \cdot \sum\limits_{k = 0}^{ + \infty } {{x^{4k}}} \end{array}\)

Since the first factor is\({x^9}\), we require a factor \(x\) in at least one of the sums. We then note that we cannot obtain the factor \(x\) from any of the sums (as the sums only provide the second, third, and fourth powers of \(x\) )

Thus \({x^{10}}\) is not present in the series and thus the coefficient of \({x^{10}}\) has to be zero.

e).

Step 8: Use Extended Binomial Theorem:

\(\begin{array}{l}\left( {1 + {x^2} + {x^4} + \ldots } \right)\left( {1 + {x^4} + {x^8} + \ldots } \right)\left( {1 + {x^6} + {x^{12}} + \ldots } \right)\\ = \sum\limits_{k = 0}^{ + \infty } {{x^{2k}}} \cdot \sum\limits_{m = 0}^{ + \infty } {{x^{4m}}} \cdot \sum\limits_{n = 0}^{ + \infty } {{x^{6n}}} \end{array}\)

We then obtain \({x^{10}}\) if\(2k + 4m + 6n = 10\). Since\(k\), \(m\) and \(n\) are non-negative integers:

\(\begin{array}{*{20}{r}}{k = 5,m = 0,n = 0}\\{{\rm{ or }}k = 3,m = 1,n = 0}\\{{\rm{ or }}k = 1,m = 2,n = 0}\\{{\rm{ or }}k = 0,m = 1,n = 1}\\{{\rm{ or }}k = 2,m = 0,n = 1}\end{array}\)

Since the coefficient of each combination is 1 and since there are 5 combinations, the coefficient of \({x^{10}}\) is:

\(1 + 1 + 1 + 1 + 1 = 5\)

Most popular questions for Math Textbooks

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.