Americas
Europe
Q9E
Expert-verifiedFind the coefficient of \({x^{10}}\) in the power series of each of these functions.
a) \({\left( {1 + {x^5} + {x^{10}} + {x^{15}} + \cdots } \right)^3}\)
b) \({\left( {{x^3} + {x^4} + {x^5} + {x^6} + {x^7} + \cdots } \right)^3}\)
c) \(\left( {{x^4} + {x^5} + {x^6}} \right)\left( {{x^3} + {x^4} + {x^5} + {x^6} + {x^7}} \right)(1 + x + \left. {{x^2} + {x^3} + {x^4} + \cdots } \right)\)
d) \(\left( {{x^2} + {x^4} + {x^6} + {x^8} + \cdots } \right)\left( {{x^3} + {x^6} + {x^9} + } \right. \cdots \left( {{x^4} + {x^8} + {x^{12}} + \cdots } \right)\)
e) \(\left( {1 + {x^2} + {x^4} + {x^6} + {x^8} + \cdots } \right)\left( {1 + {x^4} + {x^8} + {x^{12}} + } \right. \cdots )\left( {1 + {x^6} + {x^{12}} + {x^{18}} + \cdots } \right)\)
The coefficient of \({x^{10}}\) in the power series of each of these functions is given below;
(a) 6
(b) 3
(c) 9
(d) 0
(e) 5
The Extended Binomial Theorem: Let \(x\) be a real number with \(|x| < 1\) and let \(u\) be a real number. Then
\({(1 + x)^u} = \sum\limits_{k = 0}^\infty {\left( {\begin{array}{*{20}{l}}u\\k\end{array}} \right)} {x^k}\)
\(\begin{array}{c}{\left( {1 + {x^5} + {x^{10}} + {x^{15}} + \ldots } \right)^3} = {\left( {{x^{5(0)}} + {x^{5(1)}} + {x^{5(2)}} + {x^{5(3)}} + \ldots } \right)^3}\\ = {\left( {\sum\limits_{k = 0}^{ + \infty } {{x^{5k}}} } \right)^3}\\ = {\left( {\sum\limits_{k = 0}^{ + \infty } {{{\left( {{x^5}} \right)}^k}} } \right)^3}\\ = {\left( {\frac{1}{{1 - {x^5}}}} \right)^3}\\ = {\left( {1 + \left( { - {x^5}} \right)} \right)^{ - 3}}\\ = \sum\limits_{k = 0}^{ + \infty } {( - 3)} {\left( { - {x^5}} \right)^k}\\ = \sum\limits_{k = 0}^{ + \infty } {\left( {\begin{array}{*{20}{c}}{ - 3}\\k\end{array}} \right)} {( - 1)^k}{x^{5k}}\end{array}\)
\(\begin{array}{c}{a_{5k}} = \left( {\begin{array}{*{20}{c}}{ - 3}\\k\end{array}} \right){( - 1)^k}\\{a_{10}} = \left( {\begin{array}{*{20}{c}}{ - 3}\\2\end{array}} \right){( - 1)^2}\\ = \frac{{( - 3)( - 4)}}{{2!}}\\ = \frac{{12}}{2}\\ = 6\end{array}\)
Thus, the coefficient of \({x^{10}}\) is 6.
b).
\(\begin{array}{c}{\left( {{x^3} + {x^4} + {x^5} + \ldots } \right)^3} = {\left( {{x^3}} \right)^3}{\left( {{x^0} + {x^1} + {x^2} + {x^3} + \ldots } \right)^3}\\ = {x^9} \cdot {\left( {\sum\limits_{k = 0}^{ + \infty } {{x^k}} } \right)^3}\\ = {x^9} \cdot {\left( {\frac{1}{{1 - x}}} \right)^3}\\ = {x^9} \cdot {(1 + ( - x))^{ - 3}}\\ = {x^9} \cdot \sum\limits_{k = 0}^{ + \infty } {\left( {\begin{array}{*{20}{c}}{ - 3}\\k\end{array}} \right)} {( - x)^k}\\ = \sum\limits_{k = 0}^{ + \infty } {\left( {\begin{array}{*{20}{c}}{ - 3}\\k\end{array}} \right)} {( - 1)^k}{x^{k + 9}}\end{array}\)
\(\begin{array}{c}{a_{k + 9}} = \left( {\begin{array}{*{20}{c}}{ - 3}\\k\end{array}} \right){( - 1)^k}\\{a_{10}} = \left( {\begin{array}{*{20}{c}}{ - 3}\\1\end{array}} \right){( - 1)^1}\\ = - \frac{{( - 3)}}{{1!}}\\ = 3\end{array}\)
Thus, the coefficient of \({x^{10}}\) is 3
c).
\(\begin{array}{c}\left( {{x^4} + {x^5} + {x^6}} \right)\left( {{x^3} + {x^4} + {x^5} + {x^6} + {x^7}} \right)\left( {1 + x + {x^2} + {x^3} + {x^4} + \ldots } \right)\\ = {x^4}\left( {1 + x + {x^2}} \right)\left( {{x^3}} \right)\left( {1 + x + {x^2} + {x^3} + {x^4}} \right)\left( {1 + x + {x^2} + {x^3} + {x^4} + \ldots } \right)\\ = {x^7} \cdot \sum\limits_{k = 0}^2 {{x^k}} \cdot \sum\limits_{k = 0}^4 {{x^k}} \cdot \sum\limits_{k = 0}^{ + \infty } {{x^k}} \\ = {x^7} \cdot \sum\limits_{k = 0}^2 {{x^k}} \cdot \sum\limits_{k = 0}^4 {{x^k}} \cdot \frac{1}{{1 - x}}\\ = {x^7} \cdot \frac{{1 - {x^3}}}{{1 - x}} \cdot \frac{{1 - {x^5}}}{{1 - x}} \cdot \frac{1}{{1 - x}}\end{array}\)
By further simplification
\(\begin{array}{c} = \frac{{{x^7}\left( {1 - {x^3}} \right)\left( {1 - {x^5}} \right)}}{{{{(1 - x)}^3}}}\\ = \frac{{{x^7}\left( {1 - {x^3} - {x^5} + {x^8}} \right)}}{{{{(1 - x)}^3}}}\\ = \left( {{x^7} - {x^{10}} - {x^{12}} + {x^{15}}} \right) \cdot {(1 + ( - x))^{ - 3}}\\ = \left( {{x^7} - {x^{10}} - {x^{12}} + {x^{15}}} \right) \cdot \sum\limits_{k = 0}^{ + \infty } {\left( {\begin{array}{*{20}{c}}{ - 3}\\k\end{array}} \right)} {( - x)^k}\end{array}\)
By further simplification
\(\begin{array}{c} = \sum\limits_{k = 0}^{ + \infty } {\left( {\begin{array}{*{20}{c}}{ - 3}\\k\end{array}} \right)} {( - 1)^k}{x^{k + 7}} - \sum\limits_{k = 0}^{ + \infty } {\left( {\begin{array}{*{20}{c}}{ - 3}\\k\end{array}} \right)} {( - 1)^k}{x^{k + 10}}\\ - \sum\limits_{k = 0}^{ + \infty } {\left( {\begin{array}{*{20}{c}}{ - 3}\\k\end{array}} \right)} {( - 1)^k}{x^{k + 12}} + \sum\limits_{k = 0}^{ + \infty } {\left( {\begin{array}{*{20}{c}}{ - 3}\\k\end{array}} \right)} {( - 1)^k}{x^{k + 15}}\end{array}\)
\(\begin{array}{c}{a_{10}} = \left( {\begin{array}{*{20}{c}}{ - 3}\\3\end{array}} \right){( - 1)^3} - \left( {\begin{array}{*{20}{c}}{ - 3}\\0\end{array}} \right){( - 1)^0}\\ = - \frac{{( - 3)( - 4)( - 5)}}{{3!}} - 1\\ = 10 - 1\\ = 9\end{array}\)
d).
\(\begin{array}{c}\left( {{x^2} + {x^4} + {x^6} + \ldots } \right)\left( {{x^3} + {x^6} + {x^9} + \ldots } \right)\left( {{x^4} + {x^8} + {x^{12}} + \ldots } \right)\\ = {x^2}\left( {1 + {x^2} + {x^4} + \ldots } \right)\left( {{x^3}} \right)\left( {1 + {x^3} + {x^6} + \ldots } \right)\left( {{x^4}} \right)\left( {1 + {x^4} + {x^8} + \ldots } \right)\\ = {x^9} \cdot \sum\limits_{k = 0}^{ + \infty } {{x^{2k}}} \cdot \sum\limits_{k = 0}^{ + \infty } {{x^{3k}}} \cdot \sum\limits_{k = 0}^{ + \infty } {{x^{4k}}} \end{array}\)
Since the first factor is\({x^9}\), we require a factor \(x\) in at least one of the sums. We then note that we cannot obtain the factor \(x\) from any of the sums (as the sums only provide the second, third, and fourth powers of \(x\) )
Thus \({x^{10}}\) is not present in the series and thus the coefficient of \({x^{10}}\) has to be zero.
e).
\(\begin{array}{l}\left( {1 + {x^2} + {x^4} + \ldots } \right)\left( {1 + {x^4} + {x^8} + \ldots } \right)\left( {1 + {x^6} + {x^{12}} + \ldots } \right)\\ = \sum\limits_{k = 0}^{ + \infty } {{x^{2k}}} \cdot \sum\limits_{m = 0}^{ + \infty } {{x^{4m}}} \cdot \sum\limits_{n = 0}^{ + \infty } {{x^{6n}}} \end{array}\)
We then obtain \({x^{10}}\) if\(2k + 4m + 6n = 10\). Since\(k\), \(m\) and \(n\) are non-negative integers:
\(\begin{array}{*{20}{r}}{k = 5,m = 0,n = 0}\\{{\rm{ or }}k = 3,m = 1,n = 0}\\{{\rm{ or }}k = 1,m = 2,n = 0}\\{{\rm{ or }}k = 0,m = 1,n = 1}\\{{\rm{ or }}k = 2,m = 0,n = 1}\end{array}\)
Since the coefficient of each combination is 1 and since there are 5 combinations, the coefficient of \({x^{10}}\) is:
\(1 + 1 + 1 + 1 + 1 = 5\)
94% of StudySmarter users get better grades.
Sign up for free