Americas
Europe
Q14SE
Expert-verifiedShow that each of these identities holds.
\({\bf{a)}}\) \({\bf{x}} \odot {\bf{x = 1}}\)
\({\bf{b)}}\) \({\bf{x}} \odot {\bf{\bar x = 0}}\)
\({\bf{c)}}\) \({\bf{x}} \odot {\bf{y = y}} \odot {\bf{x}}\)
\({\bf{a)}}\) The given equation \({\bf{x}} \odot {\bf{x = 1}}\) holds.
\({\bf{b)}}\) The given equation \({\bf{x}} \odot {\bf{\bar x = 0}}\) holds.
\({\bf{c)}}\) The given equation \({\bf{x}} \odot {\bf{y = y}} \odot {\bf{x}}\) holds.
The complement of an element: \({\bf{\bar 0 = 1}}\) and \({\bf{\bar 1 = 0}}\).
The Boolean sum \({\bf{ + }}\) or \({\bf{OR}}\) is \({\bf{1}}\) if either term is \({\bf{1}}\).
The Boolean product \( \bullet \) or \({\bf{AND}}\) is \({\bf{1}}\) if both terms are \({\bf{1}}\).
The \({\bf{NOR}}\) operator \( \downarrow \) is \({\bf{1}}\) if both terms are \({\bf{0}}\).
The \({\bf{XOR}}\) operator \( \oplus \) is \({\bf{1}}\) if one of the terms is \({\bf{1}}\) (but not both).
The \({\bf{NAND}}\) operator \(\mid \) is \({\bf{1}}\) if either term is \({\bf{0}}\).
The Boolean operator \( \odot \) is \({\bf{1}}\) if both terms have the same value.
It is given that \({\bf{x}} \odot {\bf{x = 1}}\).
Now create a table for all possible values of \({\bf{x, y}}\) and \({\bf{z}}\).
The Boolean operator \( \odot \) is \({\bf{1}}\) if both terms have the same value.
\(\begin{array}{*{20}{r}}{\bf{x}}&{{\bf{ x}}}&{{\bf{ x}} \odot {\bf{x}}}&{\bf{1}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}\\{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{1}}\end{array}\)
Then note that the last two columns of the table are identical.
Hence, it gives \({\bf{x}} \odot {\bf{x = 1}}\).
(b)
It is given that \({\bf{x}} \odot {\bf{\bar x = 0}}\).
Now create a table for all possible values of \({\bf{x, y}}\) and \({\bf{z}}\).
The Boolean operator \( \odot \) is \({\bf{1}}\) if both terms have the same value.
\(\begin{array}{*{20}{r}}{\bf{x}}&{{\bf{ \bar x}}}&{{\bf{ x}} \odot {\bf{\bar x}}}&{\bf{0}}\\{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{0}}\\{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\end{array}\)
Then note that the last two columns of the table are identical.
Hence, it gives \({\bf{x}} \odot {\bf{\bar x = 0}}\).
It is given that \({\bf{x}} \odot {\bf{y = y}} \odot {\bf{x}}\).
Now create a table for all possible values of \({\bf{x, y}}\) and \({\bf{z}}\).
The Boolean operator \( \odot \) is \({\bf{1}}\) if both terms have the same value.
\(\begin{array}{*{20}{r}}{\bf{x}}&{{\bf{ y}}}&{{\bf{ x}} \odot {\bf{y}}}&{{\bf{ y}} \odot {\bf{x}}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}\\{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{0}}\\{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\\{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{1}}\end{array}\)
Then note that the last two columns of the table are identical.
Hence, it gives \({\bf{x}} \odot {\bf{y = y}} \odot {\bf{x}}\).
94% of StudySmarter users get better grades.
Sign up for free