• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q15E

Expert-verified
Discrete Mathematics and its Applications
Found in: Page 828
Discrete Mathematics and its Applications

Discrete Mathematics and its Applications

Book edition 7th
Author(s) Kenneth H. Rosen
Pages 808 pages
ISBN 9780073383095

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Use NAND gates to construct circuits with these outputs.

\(\begin{array}{l}{\bf{a)}}\overline {\bf{x}} \\{\bf{b)x + y}}\\{\bf{c)xy}}\\{\bf{d)x}} \oplus {\bf{y}}\end{array}\)

The circuits are

(a)

(b)

(c)

(d)

See the step by step solution

Step by Step Solution

Step 1: Defining of gates.

There are three types of gates.

It is also called NOT gate.

Step 2: Construct the circuit.

(a)

Step 3: Construct circuit by NAND.

(b)

Now,

\(\begin{array}{c}\overline {(\overline x + \overline y )} = \overline{\overline x} + \overline{\overline y} \\ = x - y\end{array}\)

Step 4: Construct circuit for xy.

(c)

Now, \(\overline{\overline {x.y}} = x.y\)

Step 5: Construct a circuit for \({\bf{x}} \oplus {\bf{y}}\).

(d)

Now,

\(\begin{array}{c}(\overline x + y).(x + \overline y ) = \overline {(\overline x + y)} .\overline {(x + \overline y )} \\ = \overline{\overline x} .\overline y + \overline x .\overline{\overline y} \\ = x.\overline y + \overline x .y\\ = x \oplus y\end{array}\)

Therefore, by the circuits get the results.

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.