Americas
Europe
Q25E
Expert-verifiedShow that these identities hold.
\(\begin{array}{c}a)\;x \oplus y{\bf{ = (x + }}y)\overline {(xy)} \\b)\;x \oplus y{\bf{ = (x\bar y) + }}(\bar xy)\end{array}\)
a) The given identity \(x \oplus y = \left( {x + y} \right)\overline {\left( {xy} \right)} \) is hold
b) The given identity \(x \oplus y = \left( {x\bar y} \right) + \left( {\bar xy} \right)\) is hold
The complement of an element: \(\bar 0 = 1\) and \(\bar 1 = 0\)
The Boolean sum \( + \) or \(OR\) is \(1\) if either term is \(1\).
The Boolean product \( \cdot \) or \(AND\) is \(1\) if both terms are \(1\).
The \(XOR\) operator \( \oplus \) is \(1\) if one of the terms is \(1\) (but not both).
\(x\) and \(y\) can both take on the value of \(0\) or \(1\).
The XOR operator is \(1\) if one of the two elements (but not both) are \(1\).
\(\begin{array}{*{20}{r}}x&y&{x + y}&{xy}&{\overline {\left( {xy} \right)} }&{\left( {x + y} \right)\overline {\left( {xy} \right)} }&{x \oplus y}\\0&0&0&0&1&0&0\\0&1&1&0&1&1&1\\1&0&1&0&1&1&1\\1&1&1&1&0&0&0\end{array}\)
Notes that the last two columns of the table are identical.
Therefore, you get\({\bf{(x + }}y)\overline {(xy)} {\bf{ = }}x \oplus y\).
\(x\) and \(y\) can both take on the value of \(0\) or \(1\).
The \(XOR\) operator is \(1\) if one of the two elements (but not both) are \(1\).
\(\begin{array}{*{20}{r}}x&y&{\bar x}&{\bar y}&{\left( {x\bar y} \right)}&{\left( {\bar xy} \right)}&{\left( {x\bar y} \right) + \left( {\bar xy} \right)}&{x \oplus y}\\0&0&1&1&0&0&0&0\\0&1&1&0&0&1&1&1\\1&0&0&1&1&0&1&1\\1&1&0&0&0&0&0&0\end{array}\)
Notes that the last two columns of the table are identical.
Therefore, you get\((x\bar y) + (\bar xy) = x \oplus y\).
94% of StudySmarter users get better grades.
Sign up for free