• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q6E

Expert-verified
Discrete Mathematics and its Applications
Found in: Page 818
Discrete Mathematics and its Applications

Discrete Mathematics and its Applications

Book edition 7th
Author(s) Kenneth H. Rosen
Pages 808 pages
ISBN 9780073383095

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Use a table to express the values of each of these Boolean functions.

\(\begin{array}{l}{\bf{a) F(x,y,z) = \bar z}}\\{\bf{b) F(x,y,z) = \bar xy + \bar yz}}\\{\bf{c) F(x,y,z) = x\bar yz + }}\overline {{\bf{(xyz)}}} \\{\bf{d) F(x,y,z) = \bar y(xz + \bar x\bar z)}}\end{array}\)

a) The table of the given Boolean function \(F(x,y,z) = \bar z\) is

\(\begin{array}{*{20}{l}}x&y&z&{\bar z}\\0&0&0&1\\0&0&1&0\\0&1&0&1\\0&1&1&0\\1&0&0&1\\1&0&1&0\\1&1&0&1\\1&1&1&0\end{array}\)

b) The table of the given Boolean function \({\bf{F(x,y,z) = \bar xy + \bar yz}}\) is

\(\begin{array}{*{20}{c}}x&y&z&{\overline x }&{\overline y }&{\overline x \cdot y}&{\overline y \cdot z}&{\overline {x \cdot } y + \overline y \cdot z}\\0&0&0&1&1&0&0&0\\0&0&1&1&1&0&1&1\\0&1&0&1&0&1&0&1\\0&1&1&1&0&1&0&1\\1&0&0&0&1&0&0&0\\1&0&1&0&1&0&1&1\\1&1&0&0&0&0&0&0\\1&1&1&0&0&0&0&0\end{array}\)

c) The table of the given Boolean function \(F(x,y,z) = x\bar yz + \overline {(xyz)} \) is

\(\begin{array}{*{20}{c}}{\bf{x}}&{\bf{y}}&{\bf{z}}&{{\bf{\bar y}}}&{{\bf{x}} \cdot {\bf{\bar y}}}&{{\bf{x}} \cdot {\bf{\bar y}} \cdot {\bf{z}}}&{{\bf{x}} \cdot {\bf{y}}}&{{\bf{x}} \cdot {\bf{y}} \cdot {\bf{z}}}&{\overline {{\bf{(x}} \cdot {\bf{y}} \cdot {\bf{z)}}} }&{{\bf{x}} \cdot {\bf{\bar y}} \cdot {\bf{z + }}\overline {{\bf{(x}} \cdot {\bf{y}} \cdot {\bf{z)}}} }\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}\\{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}\\{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}\\{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}\\{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}\\{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{1}}\\{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}\end{array}\)

d) The table of the given Boolean function \({\bf{F(x,y,z) = \bar y(xz + \bar x\bar z)}}\) is

\(\begin{array}{*{20}{c}}x&{ y}&{ z}&{ \bar x}&{ \bar y}&{ \bar z}&{ x \cdot z}&{ \bar x \cdot \bar z}&{ x \cdot z + \bar x \cdot \bar z}&{ \bar y \cdot (x \cdot z + \bar x \cdot \bar z)}\\0&0&0&1&1&1&0&1&1&1\\0&0&1&1&1&0&0&0&0&0\\0&1&0&1&0&1&0&1&1&0\\0&1&1&1&0&0&0&0&0&0\\1&0&0&0&1&1&0&0&0&0\\1&0&1&0&1&0&1&0&1&1\\1&1&0&0&0&1&0&0&0&0\\1&1&1&0&0&0&1&0&1&0\end{array}\)

See the step by step solution

Step by Step Solution

Step 1: Definition

The complement of an element: \({\bf{\bar 0 = 1}}\) and \({\bf{\bar 1 = }}0\)

The Boolean sum + or \(OR\) is 1 if either term is 1.

The Boolean product \( \cdot \) or \(AND\) is 1 if both terms are 1.

Step 2: (a) Using the definition of complement

\(F(x,y,z) = \bar z\)

The function has three variables x, y and z. Each of these variables can take on the value of 0 or 1.

Therefore, the table of the given Boolean function \(F(x,y,z) = \bar z\) is

\(\begin{array}{*{20}{l}}x&y&z&{\bar z}\\0&0&0&1\\0&0&1&0\\0&1&0&1\\0&1&1&0\\1&0&0&1\\1&0&1&0\\1&1&0&1\\1&1&1&0\end{array}\)

Step 3: (b) Using Boolean product and sum

\({\bf{F(x,y,z) = \bar xy + \bar yz}}\)

The function has three variables x, y and z. Each of these variables can take on the value of 0 or 1.

Note: \(\bar xy\) represents \(\bar x \cdot y\) and \(\bar yz\) represents \(\bar y \cdot z\)

Therefore, the table of the given Boolean function \({\bf{F(x,y,z) = \bar xy + \bar yz}}\) is

\(\begin{array}{*{20}{c}}x&y&z&{\overline x }&{\overline y }&{\overline x \cdot y}&{\overline y \cdot z}&{\overline {x \cdot } y + \overline y \cdot z}\\0&0&0&1&1&0&0&0\\0&0&1&1&1&0&1&1\\0&1&0&1&0&1&0&1\\0&1&1&1&0&1&0&1\\1&0&0&0&1&0&0&0\\1&0&1&0&1&0&1&1\\1&1&0&0&0&0&0&0\\1&1&1&0&0&0&0&0\end{array}\)

Step 4: (c) Using Boolean product and sum

\(F(x,y,z) = x\bar yz + \overline {(xyz)} \)

The function has three variables x, y and z. Each of these variables can take on the value of 0 or 1.

Note: \(xyz\) represents \(x \cdot y \cdot z\) and \(x\bar y\) represents \(x \cdot \bar y\)

Therefore, the table of the given Boolean function \(F(x,y,z) = x\bar yz + \overline {(xyz)} \) is

\(\begin{array}{*{20}{c}}{\bf{x}}&{\bf{y}}&{\bf{z}}&{{\bf{\bar y}}}&{{\bf{x}} \cdot {\bf{\bar y}}}&{{\bf{x}} \cdot {\bf{\bar y}} \cdot {\bf{z}}}&{{\bf{x}} \cdot {\bf{y}}}&{{\bf{x}} \cdot {\bf{y}} \cdot {\bf{z}}}&{\overline {{\bf{(x}} \cdot {\bf{y}} \cdot {\bf{z)}}} }&{{\bf{x}} \cdot {\bf{\bar y}} \cdot {\bf{z + }}\overline {{\bf{(x}} \cdot {\bf{y}} \cdot {\bf{z)}}} }\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}\\{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}\\{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}\\{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}\\{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}\\{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{1}}\\{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}\end{array}\)

Step 5: (d) Using Boolean product and sum

\({\bf{F(x,y,z) = \bar y(xz + \bar x\bar z)}}\)

The function has three variables x, y and z. Each of these variables can take on the value of 0 or 1.

Note: \(yz\) represents \(y \cdot z\) and \(\bar y\bar z\) represents \(\bar y \cdot \bar z\)

Therefore, the table of the given Boolean function \({\bf{F(x,y,z) = \bar y(xz + \bar x\bar z)}}\) is

\(\begin{array}{*{20}{c}}x&{ y}&{ z}&{ \bar x}&{ \bar y}&{ \bar z}&{ x \cdot z}&{ \bar x \cdot \bar z}&{ x \cdot z + \bar x \cdot \bar z}&{ \bar y \cdot (x \cdot z + \bar x \cdot \bar z)}\\0&0&0&1&1&1&0&1&1&1\\0&0&1&1&1&0&0&0&0&0\\0&1&0&1&0&1&0&1&1&0\\0&1&1&1&0&0&0&0&0&0\\1&0&0&0&1&1&0&0&0&0\\1&0&1&0&1&0&1&0&1&1\\1&1&0&0&0&1&0&0&0&0\\1&1&1&0&0&0&1&0&1&0\end{array}\)

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.