• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q26E

Expert-verified
Discrete Mathematics and its Applications
Found in: Page 422
Discrete Mathematics and its Applications

Discrete Mathematics and its Applications

Book edition 7th
Author(s) Kenneth H. Rosen
Pages 808 pages
ISBN 9780073383095

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Let\(n\)and \(k\) be integers with \(1 \le k \le n\). Show that

\(\sum\limits_{k = 1}^n {\left( {\begin{array}{*{20}{l}}n\\k\end{array}} \right)} \left( {\begin{array}{*{20}{c}}n\\{k - 1}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{2n + 2}\\{n + 1}\end{array}} \right)/2 - \left( {\begin{array}{*{20}{c}}{2n}\\n\end{array}} \right)\)

The expression\(\sum\limits_{k = 1}^n {\left( {\begin{array}{*{20}{l}}n\\k\end{array}} \right)} \left( {\begin{array}{*{20}{c}}n\\{k - 1}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{2n + 2}\\{n + 1}\end{array}} \right)/2 - \left( {\begin{array}{*{20}{c}}{2n}\\n\end{array}} \right)\)is proved.

See the step by step solution

Step by Step Solution

Step 1: Formula of Pascal identity

Pascal identity:

\(\left( {\begin{array}{*{20}{c}}{n + 1}\\k\end{array}} \right) = \left( {\begin{array}{*{20}{c}}n\\{k - 1}\end{array}} \right) + \left( {\begin{array}{*{20}{l}}n\\k\end{array}} \right)\)

Step 2: Calculate the coefficient of \({x^{n + 1}}\) in \({(1 + x)^{2n}}\) in two ways

Coefficient of \({x^k}\) in \({(1 + x)^n}\) multiplied by coefficient of \({(1 + x)^{n - k + 1}}\) in\({(1 + x)^n}\)over all possible values of \(k = \sum\limits_{k = 1}^n {\left( {\begin{array}{*{20}{l}}n\\k\end{array}} \right)} \cdot \left( {\begin{array}{*{20}{c}}n\\{n - k + 1}\end{array}} \right)\).

Now, \(k = \sum\limits_{k = 1}^n {\left( {\begin{array}{*{20}{l}}n\\k\end{array}} \right)} \cdot \left( {\begin{array}{*{20}{l}}n\\{k - 1}\end{array}} \right)\).

Coefficient of\({x^{n + 1}}\)in\({(1 + x)^{2n}}\)is \(\left( {\begin{array}{*{20}{c}}{2n}\\{n + 1}\end{array}} \right)\).

Step 3: Equate the coefficients and use the Pascal identity to prove the expression

Let \({\bf{n}}\) be a positive integer.

\(\begin{array}{l}\left( {\begin{array}{*{20}{c}}{2n}\\{n + 1}\end{array}} \right) + \left( {\begin{array}{*{20}{c}}{2n}\\n\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{2n}\\n\end{array}} \right) + \left( {\begin{array}{*{20}{c}}{2n}\\{n + 1}\end{array}} \right)\\\left( {\begin{array}{*{20}{c}}{2n}\\{n + 1}\end{array}} \right) + \left( {\begin{array}{*{20}{c}}{2n}\\n\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{2n + 1}\\{n + 1}\end{array}} \right)\end{array}\)

\(\begin{array}{l}\left( {\begin{array}{*{20}{c}}{2n}\\{n + 1}\end{array}} \right) + \left( {\begin{array}{*{20}{c}}{2n}\\n\end{array}} \right) = \frac{{(2n + 1)!}}{{(n + 1)!(2n + 1 - (n + 1))!}}\\\left( {\begin{array}{*{20}{c}}{2n}\\{n + 1}\end{array}} \right) + \left( {\begin{array}{*{20}{c}}{2n}\\n\end{array}} \right) = \frac{{(2n + 1)!}}{{(n + 1)!n!}}\end{array}\)

\(\begin{array}{l}\left( {\begin{array}{*{20}{c}}{2n}\\{n + 1}\end{array}} \right) + \left( {\begin{array}{*{20}{c}}{2n}\\n\end{array}} \right) = \frac{{(2n + 1)!}}{{(n + 1)!n!}} \cdot \frac{{2n + 2}}{{2n + 2}}\\\left( {\begin{array}{*{20}{c}}{2n}\\{n + 1}\end{array}} \right) + \left( {\begin{array}{*{20}{c}}{2n}\\n\end{array}} \right) = \frac{{(2n + 2)!}}{{(n + 1)!n!}} \cdot \frac{1}{{2n + 2}}\end{array}\)

\(\begin{array}{l}\left( {\begin{array}{*{20}{c}}{2n}\\{n + 1}\end{array}} \right) + \left( {\begin{array}{*{20}{c}}{2n}\\n\end{array}} \right) = \frac{{(2n + 2)!}}{{(n + 1)!n!}} \cdot \frac{1}{{2(n + 1)}}\\\left( {\begin{array}{*{20}{c}}{2n}\\{n + 1}\end{array}} \right) + \left( {\begin{array}{*{20}{c}}{2n}\\n\end{array}} \right) = \frac{{(2n + 2)!}}{{(n + 1)!(n + 1)!}} \cdot \frac{1}{2}\end{array}\)

\(\left( {\begin{array}{*{20}{c}}{2n}\\{n + 1}\end{array}} \right) + \left( {\begin{array}{*{20}{c}}{2n}\\n\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{2n + 2}\\{n + 1}\end{array}} \right)/2\)

Hence, \(\sum\limits_{k = 1}^n {\left( {\begin{array}{*{20}{l}}n\\k\end{array}} \right)} \left( {\begin{array}{*{20}{c}}n\\{k - 1}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{2n + 2}\\{n + 1}\end{array}} \right)/2 - \left( {\begin{array}{*{20}{c}}{2n}\\n\end{array}} \right)\).

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.