• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q21E

Expert-verified
Discrete Mathematics and its Applications
Found in: Page 876
Discrete Mathematics and its Applications

Discrete Mathematics and its Applications

Book edition 7th
Author(s) Kenneth H. Rosen
Pages 808 pages
ISBN 9780073383095

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

In Exercises 16–22 find the language recognized by the given deterministic finite-state automaton

The result is:

\({\bf{L(M) = }}\lambda \cup {\bf{\{ 0\} \{ 1\} \{ 0\} }} \cup {\bf{\{ 10,11\} \{ 0,1\} }} \cup {\bf{\{ 0\} \{ 1\} \{ 01\} \{ 0,1\} }} \cup {\bf{\{ 0\} \{ 1\} \{ 00\} \{ 0\} \{ 1\} \{ 0,1\} }}*\)

See the step by step solution

Step by Step Solution

Step 1: According to the figure.

Here the given figure contains five states\({{\bf{s}}_{\bf{o}}}{\bf{,}}{{\bf{s}}_{\bf{1}}}{\bf{,}}{{\bf{s}}_{\bf{2}}}{\bf{,}}{{\bf{s}}_{\bf{3}}}{\bf{,}}{{\bf{s}}_{\bf{4}}}{\bf{,}}{{\bf{s}}_{\bf{5}}}\).

If there is an arrow from \({{\bf{s}}_{\bf{i}}}\)to \({{\bf{s}}_{\bf{j}}}\)with label x, then we write it down in a row \({{\bf{s}}_{\bf{j}}}\)and in the row \({{\bf{s}}_{\bf{i}}}\)and in column x of the following table.

State

0

1

\({{\bf{s}}_{\bf{o}}}\)

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{2}}}\)

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{3}}}\)

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{2}}}\)

\({{\bf{s}}_4}\)

\({{\bf{s}}_4}\)

\({{\bf{s}}_{\bf{3}}}\)

\({{\bf{s}}_{\bf{5}}}\)

\({{\bf{s}}_4}\)

\({{\bf{s}}_{\bf{4}}}\)

\({{\bf{s}}_4}\)

\({{\bf{s}}_4}\)

\({{\bf{s}}_{\bf{5}}}\)

\({{\bf{s}}_{\bf{5}}}\)

\({{\bf{s}}_4}\)

\({{\bf{s}}_{\bf{o}}}\)is marked as the start state.

Step 2: Find the final result.

Because\({{\bf{s}}_{\bf{o}}}\)is the final state, the empty string is accepted. The string that drives the machine to the final state \({{\bf{s}}_{\bf{3}}}\)is precise\({\bf{\{ 0\} \{ 1\} \{ 0\} }}\).

There are three ways to get to the final state\({{\bf{s}}_{\bf{4}}}\), and once I get three, I stay there. The path thorough \({{\bf{s}}_{\bf{2}}}\)tells those strings in \({\bf{\{ 10,11\} \{ 0,1\} }}\) are accepted.

The path \({{\bf{s}}_{\bf{0}}}{\bf{,}}{{\bf{s}}_{\bf{1}}}{\bf{,}}{{\bf{s}}_{\bf{2}}}{\bf{,}}{{\bf{s}}_{\bf{3}}}{\bf{,}}{{\bf{s}}_{\bf{4}}}\) tells that the strings in \({\bf{\{ 0\} \{ 1\} \{ 01\} \{ 0,1\} }}\) are accepted and the path \({{\bf{s}}_{\bf{0}}}{\bf{,}}{{\bf{s}}_{\bf{1}}}{\bf{,}}{{\bf{s}}_{\bf{2}}}{\bf{,}}{{\bf{s}}_{\bf{3}}}{\bf{,}}{{\bf{s}}_{\bf{5}}},{{\bf{s}}_{\bf{4}}}\)tells those strings in \({\bf{\{ 0\} \{ 1\} \{ 00\} \{ 0\} \{ 1\} \{ 0,1\} *}}\)are accepted.

Therefore, the language recognized by machines is:

\({\bf{L(M) = }}\lambda \cup {\bf{\{ 0\} \{ 1\} \{ 0\} }} \cup {\bf{\{ 10,11\} \{ 0,1\} }} \cup {\bf{\{ 0\} \{ 1\} \{ 01\} \{ 0,1\} }} \cup {\bf{\{ 0\} \{ 1\} \{ 00\} \{ 0\} \{ 1\} \{ 0,1\} }}*\)

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.