• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q4E

Expert-verified
Discrete Mathematics and its Applications
Found in: Page 875
Discrete Mathematics and its Applications

Discrete Mathematics and its Applications

Book edition 7th
Author(s) Kenneth H. Rosen
Pages 808 pages
ISBN 9780073383095

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Show that these equalities hold.

a) \({{\bf{\{ \lambda \} }}^{\bf{*}}}{\bf{ = \{ \lambda \} }}\)

b) \({\bf{(A*)* = A*}}\) for every set of strings A.

By the following steps, the equalities hold.

a)\({{\rm{\{ }}\lambda {\rm{\} }}^*} = {\rm{\{ }}\lambda {\rm{\} }}\)

b)\({\rm{(}}A*{\rm{)}}* = A*\) for every set of strings A.

See the step by step solution

Step by Step Solution

Step 1: Definition.

Here AB represents the concatenation of A and B.

\(AB = {\rm{\{ }}xy|\,x \in A\,{\rm{and}}\,y \in B{\rm{\} }}\)

Kleene closure of A set consisting of the concatenation of any number of strings from A \({{\bf{A}}^{\bf{*}}}{\bf{ = }}\bigcup\limits_{k = 0}^{ + \infty } {{{\bf{A}}^{\bf{k}}}} \)

Step 2: Proof\({{\bf{\{ \lambda \} }}^{\bf{*}}}{\bf{ = \{ \lambda \} }}\).

(a)

\({{\rm{\{ }}\lambda {\rm{\} }}^2}\)Represent the concatenation of \({\rm{\{ }}\lambda {\rm{\} }}\)and \({\rm{\{ }}\lambda {\rm{\} }}\). Thus

\({{\rm{\{ }}\lambda {\rm{\} }}^2} = \left\{ {xy|x \in {\rm{\{ }}\lambda {\rm{\} }}\,{\rm{and}}\,y \in {\rm{\{ }}\lambda {\rm{\} }} = {\rm{\{ }}\lambda \lambda {\rm{\} }} = {\rm{\{ }}\lambda {\rm{\} }}} \right\}\)

Similarly, we get \({{\rm{\{ }}\lambda {\rm{\} }}^n} = {{\rm{\{ }}\lambda {\rm{\} }}^{n - 1}}{\rm{\{ }}\lambda {\rm{\} }} = {\rm{\{ }}\lambda \lambda {\rm{\} }} = {{\rm{\{ }}\lambda {\rm{\} }}^2} = {\rm{\{ }}\lambda {\rm{\} }}\,form = 2,3,....\)

Using the definition of the Kleene closure, then

\({{\rm{\{ }}\lambda {\rm{\} }}^*} = \bigcup\limits_{k = 0}^{ + \infty } {{\lambda ^k}} = \bigcup\limits_{k = 0}^{ + \infty } \lambda = {\rm{\{ }}\lambda {\rm{\} }}\)

Hence, the equalities hold \({{\rm{\{ }}\lambda {\rm{\} }}^*} = {\rm{\{ }}\lambda {\rm{\} }}\)

Step 3: Proof of \({{\bf{A}}^{\bf{*}}}{\bf{ = }}\bigcup\limits_{k = 0}^{ + \infty } {{{\bf{A}}^{\bf{k}}}} \).

(b)

Now, by the definition of the Kleene closure

\({{\rm{(}}{A^*}{\rm{)}}^*} = \bigcup\limits_{k = 0}^{ + \infty } {{{{\rm{(}}{A^*}{\rm{)}}}^k}} \)

\({{\rm{(}}{A^*}{\rm{)}}^2}\)Represent the concatenation of\({A^*}\)and\({A^*}\) Thus

\({{\rm{(}}{A^*}{\rm{)}}^2} = {\rm{\{ }}xy|x \in A\,and\,y \in {A^*}{\rm{\} }} = {A^*}\)

Similarly,\({{\rm{(}}{A^*}{\rm{)}}^n} = {{\rm{(}}{A^*}{\rm{)}}^{n - 1}}{A^*} = {A^*}{A^*} = {{\rm{(}}{A^*}{\rm{)}}^2} = {A^*}form = 2,3,....\)

Using the definition of the Kleene closure, then

\({\rm{(}}A*{\rm{)}}* = \bigcup\limits_{k = 0}^{ + \infty } {{{{\rm{(}}{A^*}{\rm{)}}}^k}} = \bigcup\limits_{k = 0}^{ + \infty } {{\rm{(}}{A^*}{\rm{)}}} A*\)

Therefore,\({\rm{(}}A*{\rm{)}}* = A*\)for every set of strings A.

Most popular questions for Math Textbooks

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.