Americas
Europe
Q58E
Expert-verified(a) To find Relation\({R^2}\)
(b) To find Relation \({R^3}\)
(c) To find Relation \({R^4}\)
(d) To find Relation\({R^5}\)
(a)The solution of Relation\({R^2} = \left\{ \begin{array}{l}(1,1),(1,2),(1,3),(1,4),(1,5),\\(2,1),(2,2),(2,4)(2,5),\\(3,1),(3,2),(3,3),(3,4),(3,5),\\(4,1),(4,2)(4,3),(4,4),\\(5,1),(5,2),(5,3),(5,4),(5,5)\end{array} \right\}\)
(b) The solution of Relation\({R^3} = \left\{ \begin{array}{l}(1,1),(1,2),(1,3),(1,4),(1,5),\\(2,1),(2,2),(2,3),(2,4),(2,5),\\(3,1),(3,2),(3,3),(3,4),(3,5),\\(4,1),(4,2),(4,3),(4,4),(4,5),\\(5,1),(5,2),(5,3),(5,4),(5,5)\end{array} \right\}\)
(c) The solution of Relation \({R^4} = \left\{ \begin{array}{l}(1,1),(1,2),(1,3),(1,4),(1,5),\\(2,1),(2,2),(2,3),(2,4)(2,5),\\(3,1),(3,2),(3,3),(3,4),(3,5),\\(4,1),(4,2)(4,3),(4,4),(4,5),\\(5,1),(5,2),(5,3),(5,4),(5,5)\end{array} \right\}\)
(d) The solution of Relation\({R^4} = \left\{ \begin{array}{l}(1,1),(1,2),(1,3),(1,4),(1,5),\\(2,1),(2,2),(2,3),(2,4)(2,5),\\(3,1),(3,2),(3,3),(3,4),(3,5),\\(4,1),(4,2)(4,3),(4,4),(4,5),\\(5,1),(5,2),(5,3),(5,4),(5,5)\end{array} \right\}\)
(a) Relation \(R = \{ (1,1),(1,2),(1,3),(2,3),(2,4),(3,1),(3,4),(3,5),(4,2),(4,5),(5,1)\),
\(\qquad (5,2),(5,4)\} \)
On set \(A = \{ 1,2,3,4,5\} \)
(b) Relation\(R = \{ (1,1),(1,2),(1,3),(2,3),(2,4),(3,1),(3,4),(3,5),(4,2),(4,5),(5,1)\)\(\qquad (5,2),(5,4)\} \)
On set \(A = \{ 1,2,3,4,5\} \).
(c) Relation\(R = \{ (1,1),(1,2),(1,3),(2,3),(2,4),(3,1),(3,4),(3,5),(4,2),(4,5),(5,1)\)\(\qquad (5,2),(5,4)\} \)
On set \(A = \{ 1,2,3,4,5\} \).
(d) Relation\(R = \{ (1,1),(1,2),(1,3),(2,3),(2,4),(3,1),(3,4),(3,5),(4,2),(4,5),(5,1)\)\(\qquad (5,2),(5,4)\} \)
On set \(A = \{ 1,2,3,4,5\} \).
An n-array relation on n sets, is any subset of Cartesian product of the n sets (i.e., a collection of n-tuples), with the most common one being a binary relation, a collection of order pairs from two sets containing an object from each set. The relation is homogeneous when it is formed with one set.
Consider the relation \(R\)
\({R^2} \Rightarrow \) paths of length 2
\(\begin{array}{c}{R^2} = R \cdot R\\ = \{ (1,1),(1,2),(1,3),(1,4),(1,5),\\(2,1),(2,2),(2,4),(2,5),\\(3,1),(3,2),(3,3),(3,4),(3,5),\\(4,1),(4,2),(4,3),(4,4),\\(5,1),(5,2),(5,3),(5,4),(5,5)\} \end{array}\)
Consider the relation \(R\)
\({R^3} \Rightarrow \) paths of length 3
\(\begin{array}{c}{R^3} = {R^2}.R\\ = \{ (1,1),(1,2),(1,3),(1,4),(1,5),\\(2,1),(2,2),(2,3),(2,4)(2,5),\\(3,1),(3,2),(3,3),(3,4),(3,5),\\(4,1),(4,2)(4,3),(4,4),(4,5),\\(5,1),(5,2),(5,3),(5,4),(5,5)\} \end{array}\)
Consider the relation \(R\)
\({R^4} \Rightarrow \) paths of length 4
\(\begin{array}{c}{R^4} = {R^3} \cdot R\\ = \{ (1,1),(1,2),(1,3),(1,4),(1,5),\\(2,1),(2,2),(2,3),(2,4)(2,5),\\(3,1),(3,2),(3,3),(3,4),(3,5),\\(4,1),(4,2)(4,3),(4,4),(4,5),\\(5,1),(5,2),(5,3),(5,4),(5,5)\} \end{array}\)
Consider the relation \(R\)
\({R^5} \Rightarrow \) paths of length 5
\(\begin{array}{c}{R^5} = {R^4} \bullet R\\ = \{ (1,1),(1,2),(1,3),(1,4),(1,5),\\(2,1),(2,2),(2,3),(2,4),(2,5),\\(3,1),(3,2),(3,3),(3,4),(3,5),\\(4,1),(4,2),(4,3),(4,4),(4,5),\\(5,1),(5,2),(5,3),(5,4),(5,5)\} \end{array}\)
94% of StudySmarter users get better grades.
Sign up for free