• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q44E

Expert-verified
Discrete Mathematics and its Applications
Found in: Page 757
Discrete Mathematics and its Applications

Discrete Mathematics and its Applications

Book edition 7th
Author(s) Kenneth H. Rosen
Pages 808 pages
ISBN 9780073383095

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Show that every tree can be colored using two colors. The rooted Fibonacci trees \({\bf{Tn}}\) are defined recursively in the following way. \({\bf{T1}}\)and\({\bf{T}}2\) are both the rooted tree consisting of a single vertex, and for \({\bf{n = 3, 4,}}...{\bf{,}}\) the rooted tree \({\bf{Tn}}\) is constructed from a root with \({\bf{Tn - }}1\) as its left subtree and \({\bf{Tn - 2}}\) as its right subtree.

Color the root of the tree Blue. Next, color all vertices at level 1 Red, all vertices at level 2 Blue, all vertices at level 3 red, and so on.

See the step by step solution

Step by Step Solution

Step 1: Definition

A tree is an undirected graph that is connected and that does not contain any simple circuits.

The level of a vertex is the length of the path from the root to the vertex.

Step 2: Assuming color to the trees

To prove: Every tree can be colored using two colors.

Let us use the two colors Red and Blue. Color the root of the tree Blue. Next, color all vertices at level 1 Red, all vertices at level 2 Blue, all vertices at level 3 Red, and so on.

Since a vertex v at level h can only be directly connected to a vertex at level h-1 or at level h+1, the vertex v always has a different color than the vertices it is connected to (as they are in the previous and the following level).

Most popular questions for Math Textbooks

Icon

Want to see more solutions like these?

Sign up for free to discover our expert answers
Get Started - It’s free

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.