Americas
Europe
Q14E
Expert-verifiedArectangular storage container with an open top is to have a volume of 10 m3. The length of its base is twice the width. Material for the base costs $10 per square meter. Material for the sides costs $6 per square meter. Find the cost of material for the cheapest such container.\(\)
The cost of materials is \(100.4\) dollars.
1)Volume of the container is 10 m3.
2)The length of the base is twice the width.
3) Material for the base costs $10 per square meter.
4) Material for the sides costs $6 per square meter.
Letx be the width of box and 2x be length of the base.
The base area, \(A = x \cdot 2x = 2{x^2}\)
Since the volume is\(10\;{{\mathop{\rm m}\nolimits} ^3}\), the height will be \(h = \frac{{10}}{{2{x^2}}} = \frac{5}{{{x^2}}}\)
The cost of making such a container is
Cost of base\( = 2{x^2} \times 10 = 20{x^2}\)
Cost of sides=\(\left( {\left( {2 \cdot 2x \cdot \frac{5}{{{x^2}}}} \right) + \left( {2 \cdot x \cdot \frac{5}{{{x^2}}}} \right)} \right) \times 6\)
\( = \frac{{80}}{x}\)
The total cost = cost of base + cost of sides.
\(f\left( x \right) = 20{x^2} + \frac{{80}}{x}\)
\(f\left( x \right) = 20\left( {{x^2} + \frac{4}{x}} \right)\)
Find first derivative of\(f\left( x \right)\) and equate to 0 to get the minimum or cheapest cost.
\(f\left( x \right) = 20\left( {{x^2} + \frac{4}{x}} \right)\)
\(f'\left( x \right) = 20\left( {2x - \frac{4}{{{x^2}}}} \right)\)
\(\begin{aligned}{c}20\left( {2x - \frac{4}{{{x^2}}}} \right) &= 0\\2x &= \frac{4}{{{x^2}}}\\2{x^3} &= 4\\{x^3} &= 4\\x &= 1.58\end{aligned}\)
Thus, \(x = 1.58\;{\mathop{\rm m}\nolimits} \).
\(f\left( x \right) = 20\left( {{x^2} + \frac{4}{x}} \right)\)
Put \(x = 1.58\;{\mathop{\rm m}\nolimits} \)into \(f\left( x \right) = 20\left( {{x^2} + \frac{4}{x}} \right)\)in above equation.
\(\begin{aligned}{c}f\left( {1.58} \right) &= 20\left( {{{1.58}^2} + \frac{4}{{1.58}}} \right)\\ &= 100.4\;{\rm{dollars}}\end{aligned}\)
Thus, the cost of materials is \(100.4\) dollars.
94% of StudySmarter users get better grades.
Sign up for free