Americas
Europe
Q25E
Expert-verifiedA Norman window has a shape of a rectangle surmounted by a semicircle. (Thus the diameter of the semicircle is equal to the width of the rectangle.) If the perimeter of the window is 30 ft, find the dimensions of the window so that the greatest possible amount of light is admitted.
The radius of semi-circular part is \(\frac{{30}}{{4 + \pi }} \approx 4.2\) ft.
Dimensions of rectangular window is \(8.4 \times 4.2\) ft.
Let \(a\) be the half of the width of the rectangle (radius of the semicircle) and \(h\) be the height of the rectangle.
The sketch is shown in the figure below:
Then the perimeter of the window is given by,
\(2a + 2h + \frac{1}{2}\left( {2\pi a} \right) = 2h + a\left( {2 + \pi } \right)\).
Given that the perimeter of the window is 30 ft.
Thus,
\(\begin{aligned}{c}2h + a\left( {2 + \pi } \right) &= 30\\2h &= 30 - a\left( {2 + \pi } \right)\\h &= \frac{{30 - a\left( {2 + \pi } \right)}}{2}\\h &= 15 - \left( {1 + \frac{\pi }{2}} \right)a\,\,\,\, \cdots \cdots \left( 1 \right)\end{aligned}\)
Area of the window is,
\(A\) = area of rectangle + area of semicircle
\(A = 2ah + \frac{1}{2}\pi {a^2}\,\,\, \cdots \cdots \left( 2 \right)\)
Substituting \(\left( 1 \right)\) in \(\left( 2 \right)\), we get,
\(\begin{aligned}{c}A &= 2a\left( {15 - \left( {1 + \frac{\pi }{2}} \right)a} \right) + \frac{1}{2}\pi {a^2}\\A &= 30a - 2{a^2}\left( {1 + \frac{\pi }{2}} \right) + \frac{1}{2}\pi {a^2}\\A &= 30a - 2{a^2} - \pi {a^2} + \frac{1}{2}\pi {a^2}\\A &= 30 - \left( {2 + \frac{\pi }{2}} \right){a^2}\end{aligned}\)
We need to maximize the \(A\) to find \(a\), for which it is maximum.
Differentiating \(A\), we get,
\(\begin{aligned}{l}A' &= 30 - 2\left( {2 + \frac{\pi }{2}} \right)\\A' &= 30 - \left( {4 + \pi } \right)a\end{aligned}\)
Thus,
\(\begin{aligned}{c}A' &= 0\\30 - \left( {4 + \pi } \right)a &= 0\\\left( {4 + \pi } \right)a &= 30\\a &= \frac{{30}}{{4 + \pi }}\\a \approx 4.2\end{aligned\)
The domain conditions are,\(a > 0,\,h > 0,\,A > 0\).
Therefore,
\(a \in \left( {0,\,\frac{{15}}{{1 + {\pi \mathord{\left/
{\vphantom {\pi 2}} \right.
\kern-\nulldelimiterspace} 2}}}} \right)\) .
Now, \(A\left( 0 \right) = 0\),
\(\begin{array}{c}A\left( {\frac{{30}}{{4 + \pi }}} \right) \approx A\left( {4.2} \right)\\ \approx 63\end{array}\) ,
\(A\left( {\frac{{15}}{{1 + {\pi \mathord{\left/
{\vphantom {\pi 2}} \right.
\kern-\nulldelimiterspace} 2}}}} \right) \approx 53.5\).
Hence, area of window is maximum when \(a = \frac{{30}}{{4 + \pi }}\).
Equation \(\left( 1 \right)\) becomes,
\(\begin{array}{l}h = 15 - \left( {1 + \frac{\pi }{2}} \right) \times \left( {\frac{{30}}{{4 + \pi }}} \right)\\ \Rightarrow h = \frac{{30}}{{4 + \pi }}\end{array}\)
Hence, maximum light is admitted through the window, when:
The radius of semi-circular part is \(\frac{{30}}{{4 + \pi }} \approx 4.2\) ft.
Dimensions of rectangular window is \(8.4 \times 4.2\) ft.
94% of StudySmarter users get better grades.
Sign up for free