• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q58E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 224
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

(a) Show that \({e^x} \ge 1 + x\) for \(x \ge 0\).

(b) Deduce that \({e^x} \ge 1 + x + \frac{1}{2}{x^2}\) for \(x \ge 0\).

(c) Use mathematical induction to prove that for \(x \ge 0\) and any positive integer \(n\),

\({e^x} \ge 1 + x + \frac{{{x^2}}}{{2!}} + \ldots \ldots + \frac{{{x^n}}}{{n!}}\)

(a) It is proved that \({f^\prime }(x) = {e^x} - 1\).

(b) The resultant answer is \({e^x} - \left( {1 + x + \frac{1}{2}{x^2}} \right) \ge 0\).

(c) It is proved that for \(x \ge 0\) and any positive integer n, \({e^x} \ge \left( {1 + x + \frac{{{x^2}}}{{2!}} + \ldots \ldots + \frac{{{x^n}}}{{n!}}} \right)\).

See the step by step solution

Step by Step Solution

Step 1: Given data

The given function is \({e^x} \ge 1 + x\).

Step 2: Concept of Differentiation

Differentiation is a method of finding the derivative of a function. Differentiation is a process, where we find the instantaneous rate of change in function based on one of its variables.

Step 3: Substitute the value

(a)

Obtain the derivative of \(f(x)\).

\(\begin{aligned}{l}{f^\prime }(x) &= \frac{d}{{dx}}\left( {{e^x} - (1 + x)} \right)\\{f^\prime }(x) &= {e^x} - (0 + 1)\\{f^\prime }(x) &= {e^x} - 1\end{aligned}\)

Since \({e^x}\) is an increasing function, \({e^x} \ge 1\) for all \(x \ge 0\),

Substitute 0 in \(f(x)\).

\(\begin{aligned}{l}f(0) &= {e^0} - (1 + 0)\\f(0) &= 1 - 1\\f(0) &= 0\end{aligned}\)

Thus, \(f(x) \ge f(0) = 0\) for all \(x \ge 0\), that is,

\(\begin{aligned}{c}{e^x} - (1 + x) &\ge 0\\{e^x} &\ge 1 + x\end{aligned}\)

Thus, it is proved that \({e^x} \ge 1 + x\) for all \(x \ge 0\).

Step 4: Simplify the expression

(b)

Obtain the derivative of \(f(x)\).

\(\begin{aligned}{l}{f^\prime }(x) &= \frac{d}{{dx}}\left( {{e^x} - \left( {1 + x + \frac{1}{2}{x^2}} \right)} \right)\\{f^\prime }(x) &= {e^x} - \left( {0 + 1 + \frac{1}{2}(2x)} \right)\\{f^\prime }(x) &= {e^x} - (1 + x)\end{aligned}\)

From part (a)\({e^x} \ge 1 + x\)

Substitute 0 in \(f(x)\).

\(\begin{aligned}{l}f(0) &= {e^0} - \left( {1 + 0 + \frac{1}{2}{{(0)}^2}} \right)\\f(0) &= 1 - 1\\f(0) &= 0\end{aligned}\)

Thus, \(f(x) \ge f(0) = 0\) for all \(x \ge 0\), that is,\({e^x} - \left( {1 + x + \frac{1}{2}{x^2}} \right) \ge 0\)

Thus, it is proved that \({e^x} - \left( {1 + x + \frac{1}{2}{x^2}} \right) \ge 0\) for all \(x \ge 0\).

Step 5: Simplify the expression

(c)

By induction hypothesis, to show the inequality is true when \(n = 1\).

When \(n = 1,f(x) = {e^x} - (1 + x)\)

In part (a) it already proved that the \({e^x} \ge 1 + x\) for all \(x \ge 0\).

So, the inequality is hold for \(n = 1\).

Assume that the inequality is true for any positive integer \(n\).

So, \({e^x} \ge \left( {1 + x + \frac{{{x^2}}}{{2!}} + \ldots \ldots + \frac{{{x^n}}}{{n!}}} \right)\).

Next prove the inequality is true for positive integer \(n + 1\).

The function is \(f(x) = {e^x} - \left( {1 + x + \frac{{{x^2}}}{{2!}} + \ldots \ldots + \frac{{{x^{n + 1}}}}{{(n + 1)!}}} \right)\).

Obtain the derivative of \(f(x)\).

\(\begin{aligned}{l}{f^\prime }(x) &= \frac{d}{{dx}}\left( {{e^x} - \left( {1 + x + \frac{{{x^2}}}{{2!}} + \ldots \ldots + \frac{{{x^{n + 1}}}}{{(n + 1)!}}} \right)} \right)\\{f^\prime }(x) &= {e^x} - \left( {0 + 1 + x + \frac{{{x^2}}}{{2!}} + \ldots \ldots + \frac{{{x^n}}}{{n!}}} \right)\\{f^\prime }(x) &= {e^x} - \left( {1 + x + \frac{{{x^2}}}{{2!}} + \ldots \ldots + \frac{{{x^n}}}{{n!}}} \right)\end{aligned}\)

As per assumption \({e^x} \ge \left( {1 + x + \frac{{{x^2}}}{{2!}} + \ldots \ldots + \frac{{{x^n}}}{{n!}}} \right)\)

Substitute 0 in \(f(x)\).

\(\begin{aligned}{l}f(0) &= {e^0} - \left( {1 + 0 + \frac{{{0^2}}}{{2!}} + \ldots \ldots + \frac{{{0^{n + 1}}}}{{(n + 1)!}}} \right)\\f(0) &= 1 - 1\\f(0) &= 0\end{aligned}\)

Thus, \(f(x) \ge f(0) = 0\) for all \(x \ge 0\), that is, \({e^x} \ge \left( {1 + x + \frac{{{x^2}}}{{2!}} + \ldots \ldots + \frac{{{x^n}}}{{n!}}} \right)\)

Thus, it is proved that \({e^x} \ge \left( {1 + x + \frac{{{x^2}}}{{2!}} + \ldots \ldots + \frac{{{x^n}}}{{n!}}} \right)\) for all \(x \ge 0\).

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.