Americas
Europe
Q9E
Expert-verified9–12 ■ Verify that the function satisfies the hypotheses of the Mean Value Theorem on the given interval. Then find all numbers \(c\) that satisfy the conclusion of the Mean Value Theorem.
9. \(f(x) = 2{x^2} - 3x + 1\), \((0,2)\)
The numbers \(c = 1\) satisfies the conclusion of Mean Value Theorem.
The function \(f(x) = 2{x^2} - 3x + 1\) is a polynomial.
Assume \(f\) to be a function satisfying the following properties.
(1) \(f\)Continuous on the interval \((a,b)\).
(2) \(f\) Is differentiable on the interval \((a,b)\).
Then there is a number \(c\) in \((a,b)\) such that \({f^\prime }(c) = \frac{{f(b) - f(a)}}{{b - a}}\).
Or, equivalently, \(f(b) - f(a) = {f^\prime }(c)(b - a)\).
Therefore, the function is continu\(f(x)\)ous on the closed interval \((0,2)\).
2. Since the function \(f(x) = 2{x^2} - 3x + 1\) is a polynomial function, it is differentiable everywhere.
Therefore, the function is differentiable on the open interval \((0,2)\).
Hence, the function \(f(x)\) satisfies the conditions of Mean Value Theorem.
Since the number c satisfies the conditions of Mean Value Theorem, it should lie on the open interval \((0,2)\).
Find the derivative of .
\(\begin{aligned}{c}{f^\prime }(x) &= \frac{d}{{dx}}\left( {2{x^2} - 3x + 1} \right)\\ &= 2(2x) - 3(1) + 0\\ &= 4x - 3\end{aligned}\)
Replace \({\rm{x }} \to c\) in \({f^\prime }(x)\).
\({f^\prime }(c) = 4c - 3\)
Obtain the functional values at the end points of the given interval.
Substitute \(0{\rm{ }} \to x\) in \(f(x)\).
\(\begin{aligned}{c}f(a) &= f(0)\\ &= 2{(0)^2} - 3(0) + 1\\ &= 1\end{aligned}\)
Substitute \(2{\rm{ }} \to x\) in \(f(x)\).
\(\begin{aligned}{c}f(b) &= f(2)\\ &= 2{(2)^2} - 3(2) + 1\\ &= 8 - 6 + 1\\ &= 3\end{aligned}\)
94% of StudySmarter users get better grades.
Sign up for free