Americas
Europe
Q17E
Expert-verifiedThe volume of the resulting solid by the region bounded by given curve by the use of the method of washer
The volume of the solid by the region bounded by given curve is \(\underline {21.75} \).
The equation is \({y^2} - {x^2} = 1,y = 2\); about the \(x\)-axis.
Show the theorem 7 (Integrals of symmetric Functions):
Apply the condition as follows if \(f\) is continuous on \(( - a,a)\).
a) If \(f\) is even function \((f( - x) = f(x))\), then \(\int_{ - a}^a f (x)dx = 2\int_0^a f (x)dx\).
b) If \(f\) is odd function \((f( - x) = f(x))\), then \(\int_{ - a}^a f (x)dx = 0\).
Show the equation as below:
\({y^2} - {x^2} = 1\) …….(1)
Plot a graph for the equation \({y^2} - {x^2} = 1\) by the use of the calculation as follows:
Calculate \(y\) value by the use of Equation (1)
Substitute 0 for \(x\) in Equation (1).
\(\begin{aligned}{}{y^2} - {(0)^2} = 1\\{y^2} = 1\\y = 1\end{aligned}\)
Hence, the co-ordinate of \((x,{\rm{ }}y)\) is \((0,1)\).
Calculate y value by the use of Equation (1)
Substitute 1 for \(x\) in Equation (1).
\(\begin{aligned}{}{y^2} - {(1)^2} = 1\\{y^2} = 1 + 1\\y = \sqrt 2 = \pm 1.41\end{aligned}\)
Hence, the co-ordinate of \((x,{\rm{ }}y)\) is \((1, \pm 1.41)\).
Calculate \(y\) value by the use of Equation (1)
Substitute 2 for \(x\) in Equation (1).
\(\begin{aligned}{}{y^2} - {(2)^2} = 1\\{y^2} = 1 + 4\\y = \sqrt 5 = \pm 2.24\end{aligned}\)
The co-ordinate of \((x,{\rm{ }}y)\) is \((2, \pm 2.24)\).
Calculate \(x\) value by the use of Equation (1)
Substitute 2 for \(y\) in Equation (1).
\(\begin{aligned}{}{(2)^2} - {x^2} = 1\\{x^2} = - 1 + 4\\x = \pm \sqrt 3 \end{aligned}\)
The co-ordinate of \((x,{\rm{ }}y)\) is \(( \pm \sqrt 3 ,2)\).
Draw the washer as shown in Figure 1:
Calculate the volume by the use of the method of washer:
\(V = \int_a^b \pi \left\{ {|f(x){|^2} - |g(x){|^2}} \right\}dx\) …….(2)
Rearrange the Equation (1).
\(y = \sqrt {{x^2} + 1} \)
Substitute \( - \sqrt 3 \) for \(a,\sqrt 3 \) for b, 2 for \((f(x))\), and \(\sqrt {{x^2} + 1} \) for in Equation (2).
\(\begin{aligned}{{}{}}{V = \int_{ - \sqrt 3 }^{\sqrt 3 } \pi \left( {{{(2)}^2} - \left( {\sqrt {{x^2} + 1} } \right)} \right.}\\{ = \pi \int_{ - \sqrt 3 }^{\sqrt 3 } 4 - \left( {{x^2} + 1} \right)dx}\\{ = \pi \int_{ - \sqrt 3 }^{\sqrt 3 } {\left( { - {x^2} + 3} \right)} dx}\end{aligned}\)
Consider \(f(x) = - {x^2} + 3\) …….(4)
Substitute \(( - x)\) for \(x\) in Equation (4).
\(\begin{aligned}{}f( - x) = - {( - x)^2} + 3\\ = - {x^2} + 3\\ = f(x)\end{aligned}\)
Hence the function is even function.
Apply the theorem 7 in Equation (3).
\(V = 2\pi \int_0^{\sqrt 3 } {\left( { - {x^2} + 3} \right)} dx\) …….(5)
Integrate Equation (5).
\(\begin{aligned}{}V = 2\pi \left( { - \left( {\frac{{{x^{2 + 1}}}}{{2 + 1}}} \right) + 3x} \right)_0^{\sqrt 3 }\\ = 2\pi \left( { - \frac{{{x^3}}}{3} + 3x} \right)_0^{\sqrt 3 }\\ = 2\pi \left( {\left( { - \frac{{{{(\sqrt 3 )}^3}}}{3} + 3 \times \sqrt 3 } \right) - 0} \right)\\ = 2\pi \left( { - \frac{{3\sqrt 3 }}{3} + 3\sqrt 3 } \right)\\ = 2\pi ( - \sqrt 3 + 3\sqrt 3 )\\ = 2\pi (2\sqrt 3 )\\ = 21.75\end{aligned}\)
94% of StudySmarter users get better grades.
Sign up for free