Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q20E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 369
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Sketch the region enclosed by the given curves and

find its area. 20. \(y = \frac{1}{4}{x^2},y = 2{x^2},x + y = 3,x \ge 0\).

The area is \(\frac{3}{2}\).

See the step by step solution

Step by Step Solution

The sketch of the graph of given equations

Simplify the given equations

\(y = \frac{1}{4}{x^2},y = 2{x^2},x + y = 3,x \ge 0\)

The parabolas intersect at \((0,0)\). Find where the line\((y = 3 - x)\)intersects the parabolas.

\(\begin{aligned}{l}\frac{1}{4}{x^2} = 3 - x\\\frac{1}{4}{x^2} + x - 3 = 0\\{x^2} + 4x - 12 = 0\\(x + 6)(x - 2) = 0\\x = - 6,2\end{aligned}\)

\(\begin{aligned}{l}2{x^2} = 3 - x\\2{x^2} + x - 3 = 0\\(2x + 3)(x - 1) = 0\\x = - \frac{3}{2},1\end{aligned}\)

Because we are given that \(x \ge 0\;so\,x = 1,2\)

Area calculation

The integral must be done in two sections because the top function changes at x=1. From x=0 to 1, the top on is \(y = 2{x^2}\),from x=1 to 2 the top is \(y = 3 - x\). The bottom one is the same for both sections.

\(\begin{aligned}{l}A = \int\limits_0^1 {\left( {2{x^2} - \frac{1}{4}{x^2}} \right)dx + } \int\limits_1^2 {\left( {3 - x - \frac{1}{4}{x^2}} \right)dx} \\A = \int\limits_0^1 {\left( {\frac{7}{4}{x^2}} \right)dx + } \int\limits_1^2 {\left( {3 - x - \frac{1}{4}{x^2}} \right)dx} \\A = \left( {\frac{7}{4}\left( {\frac{1}{3}{x^3}} \right)} \right)_0^1 + \left( {3x - \frac{1}{2}{x^2} - \frac{1}{4}\left( {\frac{1}{3}{x^3}} \right)} \right)_1^2\\A = \left( {\frac{7}{{21}} - 0} \right) + \left( {3(2) - \frac{1}{2}{{(2)}^2} - \frac{1}{{12}}{{(2)}^3} - \left( {3 - \frac{1}{2} - \frac{1}{{12}}} \right)} \right)\end{aligned}\)

Further simplification

\(\begin{aligned}{l} = \frac{7}{{12}} + \left( {6 - 2 - \frac{8}{{12}} - 3 + \frac{1}{2} + \frac{1}{{12}}} \right)\\ = \frac{7}{{12}} + 1 - \frac{8}{{12}} + \frac{1}{2} + \frac{1}{{12}}\\ = \frac{{7 + 12 - 8 + 6 + 1}}{{12}} = \frac{{18}}{{12}}\\A = \frac{3}{2}\end{aligned}\)

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.