Americas
Europe
Q33E
Expert-verifiedFind the area of the crescent-shaped region (called a lune) bounded by arcs of circles with radii and (see the figure)
The area of the crescent-shaped region is \(r\sqrt {{R^2} - {r^2}} + \frac{\pi }{2}{r^2} - {R^2}\arcsin \left( {\frac{r}{R}} \right)\).
The general form of a circle with center at origin is given by
\({x^2} + {y^2} = {R^2}\)
Apply the condition as follows if the function \(f\) is continuous on \(( - a,a)\).
a) If \(f\) is even \((f( - x) = f(x))\), then \(\int_{ - a}^a f (x)dx = 2\int_0^a f (x)dx\).
b) If \(f\) is odd \((f( - x) = f(x))\), then \(\int_{ - a}^a f (x)dx = 0\).
Let us suppose that the equation of the bigger circle is given as (being center at the origin)
\({x^2} + {y^2} = {R^2}\)
From here, we have
\(\begin{aligned}{l}{y^2} = {R^2} - {x^2}\\y = \pm \sqrt {{R^2} - {x^2}} \end{aligned}\)
Let us suppose that the distance between the centers of the two circles is \(a\) as shown in the given figure. Therefore, the equation of the second circle is given as
\({x^2} + {(y - b)^2} = {r^2}\)
Rewrite the equation
\(\begin{aligned}{l}{(y - b)^2} = {r^2} - {x^2}\\y - b = \pm \sqrt {{r^2} - {x^2}} \\y = b \pm \sqrt {{r^2} - {x^2}} \end{aligned}\)
Both the curves forming the crescent are above the \(x\) axis (having positive \(y\) values). Therefore, the functions to calculate the crescent area are taken as \(f(x) = b + \sqrt {{r^2} - {x^2}} \), and \(g(x) = \sqrt {{R^2} - {x^2}} \). The crescent area is given by
\(\begin{aligned}{l}A = \int\limits_{ - r}^r {\left( {f\left( x \right) - g\left( x \right)} \right)} dx\\A = \int\limits_{ - r}^r {\left( {\left( {b - \sqrt {{r^2} - {x^2}} } \right) - \left( {\sqrt {{R^2} - {x^2}} } \right)} \right)} dx\\A = 2\int\limits_0^r {\left( {\left( {b - \sqrt {{r^2} - {x^2}} } \right) - \left( {\sqrt {{R^2} - {x^2}} } \right)} \right)} dx\\A = 2\int\limits_0^r {bdx + 2\int\limits_0^r {\sqrt {{r^2} - {x^2}} dx} - 2\int\limits_0^r {\sqrt {{R^2} - {x^2}} dx} } \end{aligned}\)
Now, estimate the first integral
\(\begin{aligned}{l}2\int_0^r b dx = 2(bx)_0^r\\2\int_0^r b dx = 2(br - 0)\\2\int_0^r b dx = 2br\\2\int_0^r b dx = 2r\sqrt {{R^2} - {r^2}} \end{aligned}\)
To estimate the second integral
Take \(\begin{aligned}{l}x = r\sin t\\dx = r\cos tdt\end{aligned}\),
\(\begin{aligned}{l}2\int_0^r {\sqrt {{r^2} - {x^2}} } dx = 2\int_0^{\frac{\pi }{2}} {\sqrt {{r^2} - {r^2}{{\sin }^2}t} } \cdot r\cos tdt\\2\int_0^r {\sqrt {{r^2} - {x^2}} } dx = 2\int_0^{\frac{\pi }{2}} r \cos t \cdot r\cos tdt\\2\int_0^r {\sqrt {{r^2} - {x^2}} } dx = 2\int_0^{\frac{\pi }{2}} {{r^2}} {\cos ^2}tdt\\2\int_0^r {\sqrt {{r^2} - {x^2}} } dx = 2\int_0^{\frac{\pi }{2}} {{r^2}} \left( {\frac{{1 + \cos 2t}}{2}} \right)dt\\2\int_0^r {\sqrt {{r^2} - {x^2}} } dx = {r^2}\int_0^{\frac{\pi }{2}} {\left( {1 + \cos 2t} \right)} dt\end{aligned}\)
Simplify further the integral
\(\begin{aligned}{l}2\int_0^r {\sqrt {{r^2} - {x^2}} } dx = {r^2}\left( {t + \frac{{\sin 2t}}{2}} \right)_0^{\frac{\pi }{2}}\\2\int_0^r {\sqrt {{r^2} - {x^2}} } dx = {r^2}\left( {\left( {\pi /2 + \frac{{\sin \pi }}{2}} \right) - \left( {0 + \frac{{\sin 0}}{2}} \right)} \right)\\2\int_0^r {\sqrt {{r^2} - {x^2}} } dx = {r^2}\left( {\frac{\pi }{2} + 0 - 0} \right)\\2\int_0^r {\sqrt {{r^2} - {x^2}} } dx = \frac{{\pi {r^2}}}{2}\end{aligned}\)
Similarly, to estimate the third integral,
Let take \(\begin{aligned}{l}x = R\sin t\\dx = R\cos tdt\end{aligned}\)
\(\begin{aligned}{l} - 2\int_0^r {\sqrt {{R^2} - {x^2}} } dx = - 2\int_0^{\arcsin (r/R)} {\sqrt {{R^2} - {R^2}{{\sin }^2}t} } \cdot R\cos tdt\\ - 2\int_0^r {\sqrt {{R^2} - {x^2}} } dx = - 2\int_0^{\arcsin (r/R)} R \cos t \cdot R\cos tdt\\ - 2\int_0^r {\sqrt {{R^2} - {x^2}} } dx = - 2\int_0^{\arcsin (r/R)} {{R^2}} {\cos ^2}tdt\\ - 2\int_0^r {\sqrt {{R^2} - {x^2}} } dx = - 2\int_0^{\arcsin (r/R)} {{R^2}} \left( {\frac{{1 + \cos 2t}}{2}} \right)dt\end{aligned}\)
Solve further the integral
\(\begin{aligned}{l} - 2\int_0^r {\sqrt {{R^2} - {x^2}} } dx = - {R^2}\int_0^{\arcsin (\frac{r}{R})} {\left( {1 + \cos 2t} \right)} dt\\ - 2\int_0^r {\sqrt {{R^2} - {x^2}} } dx = - {R^2}\left( {t + \frac{{\sin 2t}}{2}} \right)_0^{\arcsin (\frac{r}{R})}\\ - 2\int_0^r {\sqrt {{R^2} - {x^2}} } dx = - {R^2}(t + \sin t\cos t)_0^{\arcsin (\frac{r}{R})}\end{aligned}\)
Further the integral can be solved as
\(\begin{aligned}{l} - 2\int_0^r {\sqrt {{R^2} - {x^2}} } dx = - {R^2}\left( {\left( {\arcsin \left( {\frac{r}{R}} \right) + \sin \left( {\arcsin \left( {\frac{r}{R}} \right)} \right) \cdot \cos \left( {\arcsin \left( {\frac{r}{R}} \right)} \right)} \right) - (0 + 0)} \right)\\ - 2\int_0^r {\sqrt {{R^2} - {x^2}} } dx = - {R^2}\left( {\left( {\arcsin \left( {\frac{r}{R}} \right) + \frac{r}{R} \cdot \frac{{\sqrt {{R^2} - {r^2}} }}{R}} \right)} \right)\\ - 2\int_0^r {\sqrt {{R^2} - {x^2}} } dx = - {R^2}\arcsin \left( {\frac{r}{R}} \right) - r\sqrt {{R^2} - {r^2}} \end{aligned}\)
Hence, the crescent area is estimated as
\(\begin{aligned}{l}A = 2r\sqrt {{R^2} - {r^2}} + \frac{{\pi {r^2}}}{2} - {R^2}\arcsin \left( {\frac{r}{R}} \right) - r\sqrt {{R^2} - {r^2}} \\A = r\sqrt {{R^2} - {r^2}} + \frac{{\pi {r^2}}}{2} - {R^2}\arcsin \left( {\frac{r}{R}} \right)\end{aligned}\)
94% of StudySmarter users get better grades.
Sign up for free