Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q3E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 369
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Find the area of the shaped region.

The shaded area is\(e - \frac{1}{e} + \frac{{10}}{3}\)square units.

See the step by step solution

Step by Step Solution

Given information

Consider two continuous functions \(f(y)\)and \(g(y)\)such that \(f(y) \ge g(y)\)for \(y \in (c,d).\)

The area bounded between \(x = f(y),x = g(y)\)and the horizontal lines \(y = c,d\)is given by

\(A = \int_c^d f (y) - g(y)dy\)

Finding the area of shaped region

On the interval \(y \in \left( { - 1,1} \right)\), we can observe that \({e^y} \ge {y^2} - 2\), on the graph

As a result, the shaded area is

\(\begin{aligned}{l}\int\limits_{ - 1}^1 {{e^y} - \left( {{y^2} - 2} \right)} dy\\ = \int\limits_{ - 1}^1 {{e^y} - } {y^2} + 2dy\\ = \left( {{e^y} - \frac{{{y^{2 + 1}}}}{{2 + 1}} + 2y} \right)_{ - 1}^1\end{aligned}\)

\( = \left( {{e^1} - \frac{{{1^3}}}{3} + 2\left( 1 \right)} \right) - \left( {{e^{ - 1}} - \frac{{{{( - 1)}^3}}}{3} + 2\left( { - 1} \right)} \right)\)

\( = \left( {e - \frac{1}{3} + 2} \right) - \left( {{e^{ - 1}} + \frac{1}{3} - 2} \right)\)

\( = e - \frac{1}{e} - \frac{2}{3} + 4\)

The shaded area is\(e - \frac{1}{e} + \frac{{10}}{3}\)square units.

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.