Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q22E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 127
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Use implicit differentiation to find an equation of the tangent line to the curve at the given point.

22. \({{\rm{x}}^{{\raise0.7ex\hbox{${\rm{2}}$} \!\mathord{\left/{\vphantom {{\rm{2}} {\rm{3}}}}\right.}\!\lower0.7ex\hbox{${\rm{3}}$}}}}{\rm{ + }}{{\rm{y}}^{{\raise0.7ex\hbox{${\rm{2}}$}\!\mathord{\left/{\vphantom {{\rm{2}} {\rm{3}}}}\right.}\!\lower0.7ex\hbox{${\rm{3}}$}}}}{\rm{ = 4, }}\left( {{\rm{ - 3}}\sqrt {\rm{3}}{\rm{,1}}} \right)\) (astroid)

The equation of the tangent line at \(\left( {{\rm{ - 3}}\sqrt {\rm{3}} {\rm{,1}}} \right)\)is \({\rm{y = }}\frac{{\rm{1}}}{{\sqrt {\rm{3}} }}{\rm{x + 4}}\)

See the step by step solution

Step by Step Solution

Step\({\rm{1}}\): Given information

The given equation is \({{\rm{x}}^{{\raise0.7ex\hbox{${\rm{2}}$} \!\mathord{\left/{\vphantom {{\rm{2}} {\rm{3}}}}\right.}\!\lower0.7ex\hbox{${\rm{3}}$}}}}{\rm{ + }}{{\rm{y}}^{{\raise0.7ex\hbox{${\rm{2}}$}\!\mathord{\left/{\vphantom {{\rm{2}} {\rm{3}}}}\right.}\!\lower0.7ex\hbox{${\rm{3}}$}}}}{\rm{ = 4}}\) with the point \(\left( {{\rm{ -3}}\sqrt {\rm{3}} {\rm{,1}}} \right)\)

Step\({\rm{2}}\): Definition of implicit differentiation

Implicit differentiation: This method consists of differentiating both sides of the equation with respect to \({\rm{x}}\) and then solving the resulting equation for \({\rm{y'}}\)

Step\({\rm{3}}\): Differentiate the given equation with respect to \({\rm{x}}\)

The equation is

\({{\rm{x}}^{{\raise0.7ex\hbox{${\rm{2}}$} \!\mathord{\left/{\vphantom {{\rm{2}} {\rm{3}}}}\right.}\!\lower0.7ex\hbox{${\rm{3}}$}}}}{\rm{ + }} {{\rm{y}}^{{\raise0.7ex\hbox{${\rm{2}}$}\!\mathord{\left/{\vphantom {{\rm{2}} {\rm{3}}}}\right.}\!\lower0.7ex\hbox{${\rm{3}}$}}}}{\rm{ = 4,}}\)

Differentiate both sides with respect to \({\rm{x}}\)

\(\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {{{\rm{x}}^{{\raise0.7ex\hbox{${\rm{2}}$} \!\mathord{\left/ {\vphantom {{\rm{2}} {\rm{3}}}}\right.}\!\lower0.7ex\hbox{${\rm{3}}$}}}}{\rm{ + }}{{\rm{y}}^{{\raise0.7ex\hbox{${\rm{2}}$} \!\mathord{\left/{\vphantom {{\rm{2}} {\rm{3}}}}\right.}\!\lower0.7ex\hbox{${\rm{3}}$}}}}} \right){\rm{ = }}\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {\rm{4}} \right)\)

The Sum rule for differentiation

\(\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {{\rm{f}}\left( {\rm{x}} \right){\rm{ + g}}\left( {\rm{x}} \right)} \right){\rm{ = }}\frac{{{\rm{d}}\left( {{\rm{f}}\left( {\rm{x}} \right)} \right)}}{{{\rm{dx}}}}{\rm{ + }}\frac{{{\rm{d}}\left( {{\rm{g}}\left( {\rm{x}} \right)} \right)}}{{{\rm{dx}}}}\)

\(\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {{{\rm{x}}^{{\raise0.7ex\hbox{${\rm{2}}$} !\mathord{\left/{\vphantom {{\rm{2}} {\rm{3}}}}\right.}\!\lower0.7ex\hbox{${\rm{3}}$}}}}} \right){\rm{ + }}\frac{{\rm{d}}}{{{\rm{dx}}}}\left({{{\rm{y}}^{{\raise0.7ex\hbox{${\rm{2}}$} \!\mathord{\left/ {\vphantom {{\rm{2}} {\rm{3}}}}\right.}\!\lower0.7ex\hbox{${\rm{3}}$}}}}} \right){\rm{ = 0}}\)

Chain rule: The chain rule states that the derivative of

\({\rm{f}}\left( {{\rm{g}}\left( {\rm{x}} \right)} \right)\) is equal to \({\rm{f'}}\left({{\rm{g}}\left( {\rm{x}} \right)} \right){\rm{ \times g'}}\left( {\rm{x}} \right)\)

\(\begin{aligned}\frac{2}{3}{{\rm{x}}^{{\raise0.7ex\hbox{${ - 1}$} \!\mathord{\left/{\vphantom {{ 1}{\rm{3}}}}\right.}\!\lower0.7ex\hbox{${\rm{3}}$}}}}{\rm{ + }}\frac{2}{3}{{\rm{y}}^{{\raise0.7ex\hbox{${ - 1}$} \!\mathord{\left/{\vphantom {{ - 1}{\rm{3}}}}\right.}\!\lower0.7ex\hbox{${\rm{3}}$}}}}{\rm{y' = 0}}\\{{\rm{x}}^{{\raise0.7ex\hbox{${ -1}$} \!\mathord{\left/{\vphantom {{ - 1} {\rm{3}}}}\right.}\!\lower0.7ex\hbox{${\rm{3}}$}}}}{\rm{ +}}{{\rm{y}}^{{\raise0.7ex\hbox{${ - 1}$} \!\mathord{\left/{\vphantom {{ - 1}{\rm{3}}}}\right.}\!\lower0.7ex\hbox{${\rm{3}}$}}}}{\rm{y' = 0}}\end{aligned}\)

Take \({\rm{y'}}\) common from the two terms in left hand side

\(\begin{aligned}{{\rm{y}}^{{\raise0.7ex\hbox{${{\rm{ - 1}}}$} \!\mathord{\left/ {\vphantom {{{\rm{ -1}}} {\rm{3}}}}\right.}\!\lower0.7ex\hbox{${\rm{3}}$}}}}y' &= - {{\rm{x}}^{{\raise0.7ex\hbox{${{\rm{ - 1}}}$}\!\mathord{\left/ {\vphantom {{{\rm{ - 1}}} {\rm{3}}}}\right.}\!\lower0.7ex\hbox{${\rm{3}}$}}}}\\y' &= \frac{{{\rm{ - }}{{\rm{x}}^{{\raise0.7ex\hbox{${{\rm{ - 1}}}$} \!\mathord{\left/ {\vphantom {{{\rm{ - 1}}} {\rm{3}}}}\right.}\!\lower0.7ex\hbox{${\rm{3}}$}}}}}}{{{{\rm{y}}^{{\raise0.7ex\hbox{${{\rm{ - 1}}}$} \!\mathord{\left/ {\vphantom {{{\rm{ - 1}}} {\rm{3}}}}\right.}\!\lower0.7ex\hbox{${\rm{3}}$}}}}}}& = -{\left( {\frac{{\rm{x}}}{{\rm{y}}}} \right)^{{\raise0.7ex\hbox{${{\rm{ - 1}}}$} \!\mathord{\left/{\vphantom {{{\rm{ - 1}}} {\rm{3}}}}\right.}\!\lower0.7ex\hbox{${\rm{3}}$}}}}&= - {\left( {\frac{{\rm{y}}}{{\rm{x}}}} \right)^{{\raise0.7ex\hbox{${\rm{1}}$} \!\mathord{\left/ {\vphantom {{\rm{1}} {\rm{3}}}}\right.}\!\lower0.7ex\hbox{${\rm{3}}$}}}}\end{aligned}\)

Step\({\rm{4}}\): Find the slope of the tangent line at \(\left( {{\rm{ - 3}}\sqrt {\rm{3}} {\rm{,1}}} \right)\)

The tangent line of a curve at a given point is a line that just touches the curve at that point and the slope of the tangent line of \({\rm{y = f}}\left( {\rm{x}} \right)\) at a point \(\left( {{{\rm{x}}_{\rm{0}}}{\rm{,}}{{\rm{y}}_{\rm{0}}}} \right)\) is \({\left. {\frac{{{\rm{dy}}}}{{{\rm{dx}}}}} \right|_{\left( {{{\rm{x}}_{\rm{0}}}{\rm{,}}{{\rm{y}}_{\rm{0}}}} \right)}}\)

So the slope of the tangent line at \(\left( {{\rm{ - 3}}\sqrt {\rm{3}} {\rm{,1}}} \right)\) is

\({\left. {\frac{{{\rm{dy}}}}{{{\rm{dx}}}}} \right|_{\left( {{\rm{ - 3}}\sqrt {\rm{3}} {\rm{,1}}} \right)}}{\rm{ = - }}{\left( {\frac{{\rm{1}}}{{{\rm{ - 3}}\sqrt {\rm{3}} }}} \right)^{{\raise0.7ex\hbox{${\rm{1}}$} \!\mathord{\left/{\vphantom {{\rm{1}} {\rm{3}}}}\right.}\!\lower0.7ex\hbox{${\rm{3}}$}}}}{\rm{ = }}\frac{{\rm{1}}}{{\sqrt {\rm{3}} }}\)

Step\({\rm{5}}\): Find an equation of the tangent line at \(\left( {{\rm{ - 3}}\sqrt {\rm{3}} {\rm{,1}}} \right)\)

The tangent line formula is,

\({\rm{y - }}{{\rm{y}}_{\rm{0}}}{\rm{ = }}{\left. {\frac{{{\rm{dy}}}}{{{\rm{dx}}}}} \right|_{\left( {{{\rm{x}}_{\rm{0}}}{\rm{,}}{{\rm{y}}_{\rm{0}}}} \right)}}\left( {{\rm{x - }}{{\rm{x}}_{\rm{0}}}} \right)\)

An equation of the tangent line at \(\left( {{\rm{ - 3}}\sqrt {\rm{3}} {\rm{,1}}} \right)\) is

\(\begin{aligned}y - 1 &= \frac{{\rm{1}}}{{\sqrt {\rm{3}} }}\left( {{\rm{x - }}\left( {{\rm{ - 3}}\sqrt {\rm{3}} } \right)} \right)\\y - 1 &=\frac{{\rm{1}}}{{\sqrt {\rm{3}} }}{\rm{x + 3}}\\y &= \frac{{\rm{1}}}{{\sqrt {\rm{3}} }}{\rm{x + 4}}\end{aligned}\)

Step\({\rm{6}}\): Plot the graph

Therefore, the equation of the tangent line at \(\left( {{\rm{ - 3}}\sqrt {\rm{3}} {\rm{,1}}} \right)\)is \({\rm{y = }}\frac{{\rm{1}}}{{\sqrt {\rm{3}} }}{\rm{x + 4}}\)

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.