Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q23E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 120
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Find the derivative of the function\(y = sin\left( {xcosx} \right)\)

The derivative of the function\(y = sin\left( {xcosx} \right)\)is \(cos\left( {xcos\left( x \right)} \right).\left( {cos\left( x \right) - xsin\left( x \right)} \right)\)

See the step by step solution

Step by Step Solution

Step 1: Given Information

The given function is\(y = sin\left( {xcosx} \right)\). Its derivative is to be found out.

Step 2: Definition of Derivative

In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value (output value) with respect to a change in its argument (input value).

Step 3: Find the derivative

The derivative of the function\(y = sin\left( {xcosx} \right)\)is computed by using the chain rule,

Put \(t = xcosx\)

Now, by the product rule,

\(\begin{array}{c}\frac{{dt}}{{dx}} = \frac{d}{{dt}}\left( {x\cos x} \right)\\ = cos\left( x \right)\frac{d}{{dx}}\left( x \right) + x\frac{d}{{dx}}\left( {cos\left( x \right)} \right)\\ = cos\left( x \right) - xsin\left( x \right)\end{array}\)

Therefore \(y = sin\left( t \right)\)

Now by chain rule:

\(\begin{array}{c}\frac{{dy}}{{dx}} = \frac{{dy}}{{dt}}.\frac{{dt}}{{dx}}\\ = \frac{d}{{dt}}\left( {sint} \right).\left( {cos\left( x \right) - xsin\left( x \right)} \right)\\ = cost.\left( {cos\left( x \right) - xsin\left( x \right)} \right)\end{array}\)

Put the value of \(t = xcosx\)

Therefore,

\(\frac{{dy}}{{dx}} = cos\left( {xcos\left( x \right)} \right).\left( {cos\left( x \right) - xsin\left( x \right)} \right)\)

Therefore, the derivative of the function\(y = sin\left( {xcosx} \right)\)is:

\(cos\left( {xcos\left( x \right)} \right).\left( {cos\left( x \right) - xsin\left( x \right)} \right)\)

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.