• :00Days
• :00Hours
• :00Mins
• 00Seconds
A new era for learning is coming soon Suggested languages for you:

Europe

Answers without the blur. Sign up and see all textbooks for free! # Chapter 5: Integrals

Expert-verified Pages: 257 - 310 ### Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280 ## 237 Questions for Chapter 5: Integrals

1. State the Substitution Rule. In practice how do you use it?

Found on Page 257
2. Evaluate the integral.

Found on Page 289
3. Evaluate the indefinite integral.

Found on Page 306
4. Find the derivative of the function $$h(x) = \int_0^{{x^2}} {\sqrt {1 + {r^3}} } dr$$ using Part 1 of The Fundamental Theorem of Calculus.

Found on Page 298
5. $$\int\limits_{ - 5}^5 {(a{x^2} + bx + c)dx = 2\int\limits_0^5 {(a{x^2} + c)dx} }$$

Found on Page 308
6. Find the derivative of the function $$y = \int_0^{\tan x} {\sqrt {t + \sqrt t } } dt$$ using Part 1 of The Fundamental Theorem of Calculus.

Found on Page 298
7. All continuous functions have derivatives.

Found on Page 308
8. Evaluate the given integral.

Found on Page 289
9. Evaluate the indefinite integral$$\int {\frac{{{{(\ln x)}^2}}}{x}} dx$$.

Found on Page 306
10. $$\int_1^9 {\frac{{\sqrt u - 2{u^2}}}{u}du} {\rm{ }}$$

Found on Page 309

94% of StudySmarter users get better grades. 