Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q12E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 306
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Evaluate the indefinite integral\(\int {{{\sec }^2}2} \theta d\theta \).

The indefinite integral value of the given equation is\(\int {{{\sec }^2}} 2\theta d\theta = \frac{1}{2}\tan \theta + c\).

See the step by step solution

Step by Step Solution

Step 1 Definition of the indefinite integral

An integral that has no upper bound and no lower bound is known as indefinite integral.

Step 2: Expand the number of variables in the equation.

Given: \(I = \int {{{\sec }^2}} 2\theta d\theta \)

Known value \(\int {{{\sec }^2}} axdx = \frac{1}{a}\tan ax + c\)

Step 3: Evaluate the equation.

Put\(a = 2,x = \theta \)

So, \(I = \frac{1}{2}\tan 2\theta + c\)

Therefore, the indefinite integral value of the given equation is\(\int {{{\sec }^2}} 2\theta d\theta = \frac{1}{2}\tan \theta + c\).

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.