Americas
Europe
Q12E
Expert-verifiedEvaluate the indefinite integral\(\int {{{\sec }^2}2} \theta d\theta \).
The indefinite integral value of the given equation is\(\int {{{\sec }^2}} 2\theta d\theta = \frac{1}{2}\tan \theta + c\).
An integral that has no upper bound and no lower bound is known as indefinite integral.
Given: \(I = \int {{{\sec }^2}} 2\theta d\theta \)
Known value \(\int {{{\sec }^2}} axdx = \frac{1}{a}\tan ax + c\)
Put\(a = 2,x = \theta \)
So, \(I = \frac{1}{2}\tan 2\theta + c\)
Therefore, the indefinite integral value of the given equation is\(\int {{{\sec }^2}} 2\theta d\theta = \frac{1}{2}\tan \theta + c\).
94% of StudySmarter users get better grades.
Sign up for free