Americas
Europe
Q13E
Expert-verifiedEvaluate the indefinite integral\(\int {\frac{{dx}}{{5 - 3x}}} \).
The indefinite integral value of the given equation is\(\int {\frac{{dx}}{{5 - 3x}}} = - \frac{1}{3}\ln (5 - 3x) + c\).
An integral that has no upper bound and no lower bound is known as indefinite integral.
Given:\(I = \int {\frac{{dx}}{{5 - 3x}}} \)
Let \(u = 5 - 3x\)
\(\begin{aligned}{c}du &= - 3dx\\dx &= - \frac{{du}}{3}\end{aligned}\)
Substitute\(5 - 3x\)and \( - 3dx\)for \({\rm{u}}\) and \({\rm{du}}\)
\(I = - \frac{1}{3}\int {\frac{1}{u}} \)
Integrate
\(I = - \frac{1}{3}\ln u + c\)
Substitute \(u = 5 - 3x\)
\(I = - \frac{1}{3}\ln (5 - 3x) + c\)
Therefore, the indefinite integral value of the given equation is\(\int {\frac{{dx}}{{5 - 3x}}} = - \frac{1}{3}\ln (5 - 3x) + c\).
94% of StudySmarter users get better grades.
Sign up for free