Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q15E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 289
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Evaluate the integral.

\(\int_{\rm{0}}^{\rm{1}} {\left( {{{\rm{x}}^{{\rm{10}}}}{\rm{ + 1}}{{\rm{0}}^{\rm{x}}}} \right)} {\rm{dx}}\).

The solution of given integral\(\int_0^1 {\left( {{x^{10}} + {{10}^x}} \right)} dx\) is \(\frac{1}{{11}} + \frac{9}{{\ln 10}}\).

See the step by step solution

Step by Step Solution

Step 1: Power rule of integration

Power rule of integration allows us to find the indefinite and definite integrals of a variety of functions like polynomials, functions involving roots and even rational functions.

\(\int_a^b {{x^n}} dx = \left. {\frac{{{x^{n + 1}}}}{{n + 1}}} \right|_a^b\) and \(\int_b^c {{a^x}} dx = \left. {\frac{{{a^x}}}{{\ln a}}} \right|_b^c\)

Step 2: Applying power rule of integration

Using evaluation theorem write given integral as-

\(\begin{aligned}{c}\int_0^1 {{x^{10}}} + {10^x}dx &= \left( {\frac{{{x^{10 + 1}}}}{{10 + 1}} + \frac{{{{10}^x}}}{{\ln 10}}} \right)_0^1\\ &= \left( {\frac{{{x^{11}}}}{{11}} + \frac{{{{10}^x}}}{{\ln 10}}} \right)_0^1\\ &= \left( {\frac{{{1^{11}}}}{{11}} + \frac{{{{10}^1}}}{{\ln 10}}} \right) - \left( {\frac{{{0^{11}}}}{{11}} + \frac{{{{10}^0}}}{{\ln 10}}} \right)\\ &= \left( {\frac{1}{{11}} + \frac{{10}}{{\ln 10}}} \right) - \left( {0 + \frac{1}{{\ln 10}}} \right)\\ &= \frac{1}{{11}} + \frac{9}{{\ln 10}}\end{aligned}\)

Therefore, the solution of given integral\(\int_0^1 {\left( {{x^{10}} + {{10}^x}} \right)} dx\) is \(\frac{1}{{11}} + \frac{9}{{\ln 10}}\).

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.