• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q15E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 298
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Find the average value of the function \(g(x) = \sqrt(3){x}\) in the interval \({\rm{(1,8)}}\).

The average value of the function \(g(x) = \sqrt(3){x}\) in the interval \({\rm{(1,8)}}\) is \(\frac{{45}}{{28}}\).

See the step by step solution

Step by Step Solution

Step 1: Formula of Average Value.

Average value: The average value of the function \(f\) is defined on the interval \({\rm{(a, b)}}\) is \({f_{ave}} = \frac{1}{{b - a}}\int_a^b f (x)dx\).

Step 2: Use the formula of Average value for calculation.

The given function is \(g(x) = \sqrt(3){x}\) in the interval \({\rm{(1,8)}}\).

Obtain the average value of the function, \(g(x) = \sqrt(3){x}\) as follows.

The limit values are got from the interval \({\rm{(1,8)}}\) as \(a = 1\) and \(b = 8\).

Substitute \(a = 1\), \(b = 8\) and \(g(x)\) in the formula \({f_{ave}} = \frac{1}{{b - a}}\int_a^b f (x)dx\) and compute the average value of \(g(x)\) as follows.

\(\begin{aligned}{l}{g_{ave}} &= \frac{1}{{b - a}}\int_a^b g (x)dx\\ &= \frac{1}{{8 - 1}}\int_1^8 {\sqrt(3){x}} dx\\ &= \frac{1}{7}\int_1^8 {{x^{\frac{1}{3}}}} dx\end{aligned}\)

Further simplify as follows.

\(\begin{aligned}{c}{g_{ave}} &= \frac{1}{7}\int_1^8 {{x^{\frac{1}{3}}}} dx\\ &= \frac{1}{7}\left( {\frac{{{x^{\frac{4}{3}}}}}{{\left( {\frac{4}{3}} \right)}}} \right)_1^8\end{aligned}\)

\(\begin{aligned}{c}{g_{ave}} &= \frac{1}{7} \times \frac{3}{4}\left( {{8^{\frac{4}{3}}} - {1^{\frac{4}{3}}}} \right)\\ &= \frac{{45}}{{28}}\end{aligned}\)

Thus, the average value of the function \(g(x) = \sqrt(3){x}\) in the interval \({\rm{(1,8)}}\) is \(\frac{{45}}{{28}}\).

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.