Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q20E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 289
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Evaluate the integrals.

\(\int_{ - 10}^{10} {\frac{{2{e^x}}}{{\sinh x + \cosh x}}} dx\)

The value of \(\int_{ - 10}^{10} {\frac{{2{e^x}}}{{\sinh x + \cosh x}}} dx\)is \(40\).

See the step by step solution

Step by Step Solution

Step 1 Definition of the integral

Integral calculus is an area of mathematics that deals with the calculation, properties, and applications of integrals.

Step 2 : Evaluating the integral.

The given data is,

\(\int_{ - 10}^{10} {\frac{{2{e^x}}}{{\sinh x + \cosh x}}} dx\)

Given that: \(\sinh x = \frac{{{e^x} - {e^{ - x}}}}{2}\) and \(\cosh x = \frac{{{e^x} + {e^{ - x}}}}{2}\)

Therefore

\(\begin{aligned}{c}\sinh x + \cosh x = \frac{{{e^x} - {e^{ - x}}}}{2} + \frac{{{e^x} + {e^{ - x}}}}{2}\\ = \frac{{2{e^x}}}{2}\\ = {e^x}\\ = \int_{ - 10}^{10} {\frac{{2{e^x}}}{{{e^x}}}} dx\\ = \int_{ - 10}^{10} 2 dx\\ = \int_{ - 10}^{10} 2 \cdot {x^0}dx\end{aligned}\)

Step 3 : Using the power rule of integration, which states that for \(n \ne  - 1\) 

Then it is expressed as,

\(\begin{aligned}{c}\int {{x^n}} dx = \frac{{{x^{n + 1}}}}{{n + 1}} + C\\ = \left( {2 \times \frac{{{x^{0 + 1}}}}{{0 + 1}}} \right)_{ - 10}^{10}\\ = (2x)_{ - 10}^{10}\\ = (2 \times 10 - 2 \times ( - 10))\\ = 20 + 20\\ = 40\end{aligned}\)

Hence the value of \(\int_{ - 10}^{10} {\frac{{2{e^x}}}{{\sinh x + \cosh x}}} dx\) is 40.

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.