Americas
Europe
Q22E
Expert-verifiedThe velocity graph of an accelerating car is shown.
(a) Estimate the average velocity of the car during the first \(12\) seconds.
(b) At what time was the instantaneous velocity equal to the average velocity?
(a) Average velocity is\(45\).
(b) It will be equal at \(4.5\)seconds.
(a) Now, find the average velocity of the car during the first \(12\)seconds.
The average value of a function is represented by this graph is,
\({{\rm{f}}_{{\rm{axe}}}}{\rm{ = }}\frac{{\rm{1}}}{{{\rm{b - a}}}}\sum\limits_{{\rm{i = 1}}}^{\rm{n}} {{\rm{f(}}{{\rm{x}}_{\rm{i}}}{\rm{)\Delta x}}} \)
Here \(\Delta x = \frac{{b - a}}{n}\) and \(n\)is a number of terms.
From the graph, \(a = 0,b = 12\)
Let us take \(n = 6\) and
\(\begin{aligned}{c}{\rm{\Delta x &= }}\frac{{{\rm{b - a}}}}{{\rm{n}}}\\{\rm{ &= }}\frac{{{\rm{12 - 0}}}}{{\rm{6}}}\\{\rm{ = 2}}\end{aligned}\)
Now, from the graph the average value is
\(\begin{aligned}{c}{{\rm{f}}_{{\rm{axe}}}}{\rm{ &= }}\frac{{\rm{1}}}{{{\rm{b - a}}}}\sum\limits_{{\rm{i &= 1}}}^{\rm{n}} {{\rm{f'(}}{{\rm{x}}_{\rm{i}}}{\rm{)\Delta x}}} \\{\rm{ &= }}\frac{{\rm{1}}}{{{\rm{12 - 0}}}}\left( {{\rm{\Delta x}}\left( {{\rm{f(1) + f}}\left( {\rm{3}} \right){\rm{ + f}}\left( {\rm{5}} \right){\rm{ + f}}\left( {\rm{7}} \right){\rm{ + f}}\left( {\rm{9}} \right){\rm{ + f}}\left( {{\rm{11}}} \right)} \right)} \right)\\{\rm{ &= }}\frac{{\rm{1}}}{{{\rm{12}}}}{\rm{.2}}\left( {{\rm{10 + 30 + 45 + 55 + 65 + 65}}} \right)\\{\rm{ &= }}\frac{{\rm{1}}}{{\rm{6}}}{\rm{.270}}\\{\rm{ &= 45}}\end{aligned}\)
Therefore, the average velocity is\(45\).
(b) From the graph,
The velocity of a car was \(45km/h\) at \(4.5\)seconds.
Therefore, instantaneous velocity is equal to average velocity at \(4.5\) seconds.
\(t = 4.5\).
94% of StudySmarter users get better grades.
Sign up for free