Americas
Europe
Q3E
Expert-verifiedEvaluate the integral
\(\int\limits_{{\rm{ - 2}}}^{\rm{0}} {\left( {{\rm{(}}\frac{{\rm{1}}}{{\rm{2}}}{{\rm{t}}^{\rm{4}}}{\rm{ + }}\frac{{\rm{1}}}{{\rm{4}}}{{\rm{t}}^{\rm{3}}}{\rm{ - t}}} \right)} {\rm{dt}}\) \(\)
The value of the integral is \(\frac{{{\rm{21}}}}{{\rm{5}}}\)
If \({\rm{f}}\)is continuous on the interval \(\left( {{\rm{a,b}}} \right)\), then \(\int\limits_{\rm{a}}^{\rm{b}} {{\rm{f(x)dx = F(b) - F(a)}}} \)
Where \({\rm{F}}\) is any antiderivative of \({\rm{f}}\), that is \({{\rm{F}}^{\rm{'}}}{\rm{ = f}}\)
To find the general antiderivative, using the indefinite integral
\(\)
and ignoring (just for the moment) the boundaries of integration.
We will leave out the arbitrary constant C, since it cancels out when calculating a definite integral.
\(\begin{array}{c}\int {{\rm{(}}\frac{{\rm{1}}}{{\rm{2}}}{{\rm{t}}^{\rm{4}}}} {\rm{ + }}\frac{{\rm{1}}}{{\rm{4}}}{{\rm{t}}^{\rm{3}}}{\rm{ - t)dt = }}\left( {\frac{{\rm{1}}}{{{\rm{10}}}}{{\rm{t}}^{\rm{5}}}{\rm{ + }}\frac{{\rm{1}}}{{{\rm{16}}}}{{\rm{t}}^{\rm{4}}}{\rm{ - }}\frac{{\rm{1}}}{{\rm{2}}}{{\rm{t}}^{\rm{2}}}} \right]_{{\rm{ - 2}}}^{\rm{0}}\\{\rm{ &= }}\left( {\frac{{\rm{1}}}{{{\rm{10}}}}{{{\rm{(0)}}}^{\rm{5}}}{\rm{ + }}\frac{{\rm{1}}}{{{\rm{16}}}}{{{\rm{(0)}}}^{\rm{4}}}{\rm{ - }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{(0)}}} \right){\rm{ - }}\left( {\frac{{\rm{1}}}{{{\rm{10}}}}{{{\rm{( - 2)}}}^{\rm{5}}}{\rm{ + }}\frac{{\rm{1}}}{{{\rm{16}}}}{{{\rm{( - 2)}}}^{\rm{4}}}{\rm{ - }}\frac{{\rm{1}}}{{\rm{2}}}{{{\rm{( - 2)}}}^{\rm{2}}}} \right)\\ &= - \left( {\frac{{32}}{{10}} + 1 - 2} \right) = - \left( { - \frac{{42}}{{10}}} \right) = \frac{{21}}{5}\end{array}\)
94% of StudySmarter users get better grades.
Sign up for free