Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q13E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 714
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Use polar coordinates to find the volume of the given solid.

Under the cone \({\rm{z = }}\sqrt {{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}} {\rm{ }}\)and above the disk\({{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}{\rm{ }} \le {\rm{ 4}}\)

The volume of the given solid is \(\frac{{16\pi }}{3}\).

See the step by step solution

Step by Step Solution

Step 1: Convert into polar coordinates.

In polar coordinates\(x = r\cos \theta \),\(y = r\sin \theta \).

\( \Rightarrow {x^2} + {y^2} = {r^2}\)

So, the given cone \(z = \sqrt {{x^2} + {y^2}} \)will be,

\(\begin{array}{l}z = \sqrt {{r^2}} \\ \Rightarrow z = r\end{array}\)

And the disk \({x^2} + {y^2} \le 4\)will be,

\(\begin{array}{l}0 \le {r^2} \le 4\\ \Rightarrow 0 \le r \le 2\end{array}\)

The region of integration is a polar rectangle described as \(0 \le \theta \le 2\pi \)and\(0 \le r \le 2\).

Step 2: Compute the volume.

The volume (V) will be

\begin{aligned}V &= \iint\limits_D {zdA} \\ &= \int\limits_0^{2\pi } {\int\limits_0^2 {r \cdot rdrd\theta } } \\ &= \int\limits_0^{2\pi } {\int\limits_0^2 {{r^2}drd\theta } } \\ \end{aligned}

Step 3: Evaluate the integral.

\(I = \int\limits_0^{2\pi } {\int\limits_0^2 {{r^2}drd\theta } } \)

Integrating on \(r\) we get,

\(\begin{array}{c}I = \int\limits_0^{2\pi } {\left( {\frac{1}{3}{r^3}} \right)} _0^2d\theta \\ = \int\limits_0^{2\pi } {\left( {\frac{1}{3}\left( {{2^3} - {2^0}} \right)} \right)} d\theta \\ = \int\limits_0^{2\pi } {\frac{8}{3}} d\theta \end{array}\)

Integrating on \(\theta \) we get,

\(\begin{array}{c}I = \frac{8}{3}\left( {\left( \theta \right)} \right)_0^{2\pi }\\ = \frac{8}{3}\left( {2\pi - 0} \right)\\ = \frac{{16\pi }}{3}\end{array}\)

Therefore, volume of the given solid is \(\frac{{16\pi }}{3}\).

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.