Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q25E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 699
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Calculate the double integral

\(\int {\int\limits_R {y{e^{ - xy}}dA,R = \left( {0,2} \right)X\left( {0,3} \right)} } \)

Therefore, integral of the given function is\(\frac{1}{2}\left( {{e^{ - 6}} + 5} \right)\).

See the step by step solution

Step by Step Solution

Step(1):- Fubini’s theorem

Recollect the fubini’s theorem

If f is continuous on the rectangle R,

\(\begin{array}{l}R = \{ (x,y)|a \le x \le b,c \le y \le d|\} then,\\\int {\int\limits_R {f\left( {x,y} \right)dA = \int\limits_a^b {\int\limits_c^d {f\left( {x,y} \right)dydx = } } } } \int\limits_a^b {\int\limits_c^d {f\left( {x,y} \right)dxdy} } \end{array}\)

Step (2):- Determining integral value

Notice that \(0 \le x \le 2\) which means that x=0 and x=2 are the lower and upper limits of integration of x respectively, and \(0 \le y \le 3\), which means that y=0 and y=3 are the lower and upper limits of integration of y respectively.

Integrating the function f(x,y)=\(y{e^{ - xy}}\) with respect to x from 0 to 2 and holding y as a constant.

\(\begin{array}{l}\int {\int\limits_R {y{e^{ - xy}}dA = \int\limits_0^3 {\left( {\int\limits_0^2 {y{e^{ - xy}}dx} } \right)dy} } } \\\int\limits_0^3 {\left( {y\frac{{{e^{ - xy}}}}{{\left( { - y} \right)}}} \right)_{x = 0}^2dy} \\\int\limits_0^3 {\left( { - {e^{ - xy}}} \right)} _{x = 0}^2dy\\\int\limits_0^3 {\left( { - {e^{ - xy}} + 1} \right)dy} \\\left( {\frac{{ - {e^{ - 2y}}}}{{ - 2}} + y} \right)_0^3\\\left( {\frac{1}{2}\frac{{{e^{ - 2y}}}}{{ - 2}} + y} \right)_0^3\\\frac{1}{2}{e^{ - 6}} + 3 - \frac{1}{2}\\\frac{1}{2}\left( {{e^{ - 6}} + 5} \right)\end{array}\)

Therefore, integral of the given function is,

\(\frac{1}{2}\left( {{e^{ - 6}} + 5} \right)\).

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.