Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration


Essential Calculus: Early Transcendentals
Found in: Page 699
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.


Short Answer

Sketch the solid whose volume is given by the integrated integral

\(\int\limits_0^1 {\int\limits_0^1 {\left( {4 - x - 2y} \right)} } dxdy\)

Given:- Double integrated integral

\(\int\limits_0^1 {\int\limits_0^1 {\left( {4 - x - 2y} \right)} } dxdy\)

To draw:- Solid volume is given by integrated integral

See the step by step solution

Step by Step Solution

Step (1):- Defining volume

The volume before the surface z=g(x,y) and below the region D is \(\int {\int\limits_D {\left( {4 - x - 2y} \right)dxdy} } \)represents the volume below the plane z=4-x-2y and a square \(x \ge 0,y \le 1\)

Step (2):- Calculating volume by solving integral

\(\begin{array}{l}\int\limits_0^1 {\left( {\int\limits_0^1 {4 - x - 2y} } \right)dxdy} \\\int\limits_0^1 {\left( {4x - \frac{{{x^2}}}{2} - 2yx} \right)} _0^1dy\\\int\limits_0^1 {\left( {4\left( 1 \right) - \frac{{{{\left( 1 \right)}^2}}}{2} - 2\left( 0 \right)\left( 1 \right) - 0} \right)} _0^1dy\\\int\limits_0^1 {\left( {\frac{7}{2} - 2y} \right)} dy\end{array}\)

Step (3):- Integrating w.r.t y

\(\begin{array}{l}\int\limits_0^1 {\left( {\frac{7}{2} - 2y} \right)} dy = \left( {\frac{7}{2}y - 2.\frac{{{y^2}}}{2}} \right)_0^1\\\frac{7}{2} - 2.\frac{{{1^2}}}{2} - 0\\\frac{7}{2} - 1 = \frac{5}{2}\end{array}\)

Therefore, the volume of the solid is \(\frac{5}{2}\)cubic units.

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.