Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q41E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 730
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Set up, but do not evaluate, integral expressions for

  1. The mass
  2. The centre of mass, and
  3. The moment of inertia about the z-axis.

The solid of exercise 19; \({\rm{\rho (x,y,z) = }}\sqrt {{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}} \).

  1. The mass of the solid is \(m = \int_{{\rm{ - 1}}}^{\rm{1}} {\int_{{{\rm{x}}^{\rm{2}}}}^{\rm{1}} {\int_{\rm{0}}^{{\rm{1 - y}}} {\sqrt {{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}} } } } {\rm{dzdydx}}\).
  2. Therefore, the centres of the mass are:

\(\begin{aligned}\rm m &= \int_{{\rm{ - 1}}}^{\rm{1}} {\int_{{{\rm{x}}^{\rm{2}}}}^{\rm{1}} {\int_{\rm{0}}^{{\rm{1 - y}}} {\sqrt {{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}} } } } {\rm{\;dz\;dy\;dx}}\\\rm\bar x &= \frac{{\rm{1}}}{{\rm{m}}}\int_{{\rm{ - 1}}}^{\rm{1}} {\int_{{{\rm{x}}^{\rm{2}}}}^{\rm{1}} {\int_{\rm{0}}^{{\rm{1 - y}}} {\rm{x}} } } \sqrt {{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}} {\rm{\;dz\;dy\;dx}}\\\rm\bar y &= \frac{{\rm{1}}}{{\rm{m}}}\int_{{\rm{ - 1}}}^{\rm{1}} {\int_{{{\rm{x}}^{\rm{2}}}}^{\rm{1}} {\int_{\rm{0}}^{{\rm{1 - y}}} {\rm{y}} } } \sqrt {{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}} {\rm{\;dz\;dy\;dx}}\\\rm\bar z &= \frac{{\rm{1}}}{{\rm{m}}}\int_{{\rm{ - 1}}}^{\rm{1}} {\int_{{{\rm{x}}^{\rm{2}}}}^{\rm{1}} {\int_{\rm{0}}^{{\rm{1 - y}}} {\rm{z}} } } \sqrt {{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}} {\rm{\;dz\;dy\;dx}}\end{aligned}\)

  1. The moment of inertia about the z-axis is \({{\rm{I}}_{\rm{z}}}{\rm{ = }}\int_{{\rm{ - 1}}}^{\rm{1}} {\int_{{{\rm{x}}^{\rm{2}}}}^{\rm{1}} {\int_{\rm{0}}^{{\rm{1 - y}}} {{{\left( {{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}} \right)}^{{\rm{3/2}}}}} } } {\rm{dzdydx}}\).
See the step by step solution

Step by Step Solution

Step 1: Concept Introduction

Triple integrals are the three-dimensional equivalents of double integrals. They're a way to add up an unlimited number of minuscule quantities connected with points in a three-dimensional space.

Step 2: Find the mass

Exercising is a great way to become in shape.

The region bounded by \({\rm{z = 0,y = }}{{\rm{x}}^{\rm{2}}}{\rm{ and y + z = 1}}\) is called the solid.

Along the line \({\rm{y = 1}}\), the planes \({\rm{y + z = 1and z = 0}}\) intersect at the \({\rm{xy}}\)plane.

We can define the region by looking at the diagram. E

\(\left\{ {{\rm{(x,y,z)}} \in {\rm{E}}\mid \;\;\;{\rm{0}} \le {\rm{z}} \le {\rm{1 - y,}}\;\;\;{{\rm{x}}^{\rm{2}}} \le {\rm{y}} \le {\rm{1,}}\;{\rm{ - 1}} \le {\rm{x}} \le {\rm{1}}} \right\}\)

The solid's mass is

\(\text{m=}\iiint_{\text{E}}{\text{ }\!\!\rho\!\!\text{ }}\text{(x,y,z)dV=}\int_{\text{-1}}^{\text{1}}{\int_{{{\text{x}}^{\text{2}}}}^{\text{1}}{\int_{\text{0}}^{\text{1-y}}{\sqrt{{{\text{x}}^{\text{2}}}\text{+}{{\text{y}}^{\text{2}}}}}}}\text{dzdydx}\)

We are not to judge the situation because it wants us not to.

Therefore, the mass of the solid is \(m = \int_{{\rm{ - 1}}}^{\rm{1}} {\int_{{{\rm{x}}^{\rm{2}}}}^{\rm{1}} {\int_{\rm{0}}^{{\rm{1 - y}}} {\sqrt {{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}} } } } {\rm{dzdydx}}\).

Step 3: Find the centre of mass

Exercising is a great way to become in shape.

The region bounded by \({\rm{z = 0,y = }}{{\rm{x}}^{\rm{2}}}{\rm{ and y + z = 1}}\) is called the solid.

Along the line\({\rm{y = 1}}\), the planes \({\rm{y + z = 1and z = 0}}\)intersect at the \({\rm{xy}}\)plane.

We can define the region by looking at the diagram. E

The coordinates of the centre of mass are calculated as follows:

\(\begin{aligned}& \bar{x}=\frac{1}{m}\iiint_{E}{x}\rho (x,y,z)dV=\frac{1}{m}\int_{-1}^{1}{\int_{{{x}^{2}}}^{1}{\int_{0}^{1-y}{x}}}\sqrt{{{x}^{2}}+{{y}^{2}}}dzdydx \\ & \bar{y}=\frac{1}{m}\iiint_{E}{y}\rho (x,y,z)dV=\frac{1}{m}\int_{1}^{1}{\int_{{{x}^{2}}}^{1}{\int_{0}^{1-y}{y}}}\sqrt{{{x}^{2}}+{{y}^{2}}}dzdydx \\ & \bar{z}=\frac{1}{m}\iiint_{E}{z}\rho (x,y,z)dV=\frac{1}{m}\int_{-1}^{1}{\int_{{{x}^{2}}}^{1}{\int_{0}^{1-y}{z}}}\sqrt{{{x}^{2}}+{{y}^{2}}}dzdydx \\\end{aligned}\)

Where

\(\text{m=}\iiint_{\text{E}}{\text{ }\!\!\rho\!\!\text{ }}\text{(x,y,z)dV=}\int_{\text{-1}}^{\text{1}}{\int_{{{\text{x}}^{\text{2}}}}^{\text{1}}{\int_{\text{0}}^{\text{1-y}}{\sqrt{{{\text{x}}^{\text{2}}}\text{+}{{\text{y}}^{\text{2}}}}}}}\text{dzdydx}\)

The problem instructs us to refrain from evaluating the integrals.

Therefore, the centres of the mass are

\(\begin{aligned}\rm m &= \int_{{\rm{ - 1}}}^{\rm{1}} {\int_{{{\rm{x}}^{\rm{2}}}}^{\rm{1}} {\int_{\rm{0}}^{{\rm{1 - y}}} {\sqrt {{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}} } } } {\rm{\;dz\;dy\;dx}}\\\rm\bar x &= \frac{{\rm{1}}}{{\rm{m}}}\int_{{\rm{ - 1}}}^{\rm{1}} {\int_{{{\rm{x}}^{\rm{2}}}}^{\rm{1}} {\int_{\rm{0}}^{{\rm{1 - y}}} {\rm{x}} } } \sqrt {{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}} {\rm{\;dz\;dy\;dx}}\\\rm\bar y &= \frac{{\rm{1}}}{{\rm{m}}}\int_{{\rm{ - 1}}}^{\rm{1}} {\int_{{{\rm{x}}^{\rm{2}}}}^{\rm{1}} {\int_{\rm{0}}^{{\rm{1 - y}}} {\rm{y}} } } \sqrt {{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}} {\rm{\;dz\;dy\;dx}}\\\rm\bar z &= \frac{{\rm{1}}}{{\rm{m}}}\int_{{\rm{ - 1}}}^{\rm{1}} {\int_{{{\rm{x}}^{\rm{2}}}}^{\rm{1}} {\int_{\rm{0}}^{{\rm{1 - y}}} {\rm{z}} } } \sqrt {{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}} {\rm{\;dz\;dy\;dx}}\end{aligned}\)

Step 4: Find the moment of inertia about the z-axis

Exercising is a great way to become in shape.

The region bounded by \({\rm{z = 0,y = }}{{\rm{x}}^{\rm{2}}}{\rm{ and y + z = 1}}\) is called the solid.

Along the line\({\rm{y = 1}}\), the planes \({\rm{y + z = 1and z = 0}}\) intersect at the \({\rm{xy}}\) plane.

We can define the region by looking at the diagram. E

The moment of inertia about the z-axis is

\(\begin{aligned} {I_z} &= \iiint_E {\left( {{x^2} + {y^2}} \right)}\rho (x,y,z)dV \\ &= \int_{ - 1}^1 {\int_{{x^2}}^1 {\int_0^{1 - y} {\left( {{x^2} + {y^2}} \right)} } } \sqrt {{x^2} + {y^2}} dzdydx{\text{ }} \\ &= \int_{ - 1}^1 {\int_{{x^2}}^1 {\int_0^{1 - y} {{{\left( {{x^2} + {y^2}} \right)}^{3/2}}} } } dzdydx \\ \end{aligned} \)

We are not to judge the situation because it wants us not to.

Therefore, the moment of inertia about the z-axis is \({{\rm{I}}_{\rm{z}}}{\rm{ = }}\int_{{\rm{ - 1}}}^{\rm{1}} {\int_{{{\rm{x}}^{\rm{2}}}}^{\rm{1}} {\int_{\rm{0}}^{{\rm{1 - y}}} {{{\left( {{{\rm{x}}^{\rm{2}}}{\rm{ + }}{{\rm{y}}^{\rm{2}}}} \right)}^{{\rm{3/2}}}}} } } {\rm{dzdydx}}\).

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.