• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q45E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 730
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Find the moments of inertia for a cube of constant density K and side length L if one vertex is located at the origin and three edges lie along the coordinate axes.

The moments of inertia for a cube is \({{\rm{I}}_{\rm{x}}}{\rm{ = }}{{\rm{I}}_{\rm{y}}}{\rm{ = }}{{\rm{I}}_{\rm{z}}}{\rm{ = }}\frac{{{\rm{2k}}{{\rm{L}}^{\rm{5}}}}}{{\rm{3}}}\).

See the step by step solution

Step by Step Solution

Step 1: Concept Introduction

Triple integrals are the three-dimensional equivalents of double integrals. They're a way to add up an unlimited number of minuscule quantities connected with points in a three-dimensional space.

Step 2: Find the moments of inertia for a cube

Let us simplify,

\(\begin{aligned}{I_x} &= \iiint_E {\left( {{y^2} + {z^2}} \right)}\rho (x,y,z)dV \\ &= k\int_0^L {\int_0^L {\int_0^L {\left( {{y^2} + {z^2}} \right)} } } dxdydz \\ &= k\int_0^L {\int_0^L {\int_0^L {\left( {{y^2} + {z^2}} \right)} } } dxdydz \\ &= k\int_0^L {\int_0^L {\left( {{y^2}x + {z^2}x} \right)_0^L} } dydz \\ &= kL\int_0^L {\int_0^L {{y^2}} } + {z^2}dydz \\ &= kL\int_0^L {\left( {\frac{{{y^3}}}{3} + {z^2}y} \right)_0^L} dz \\ &= kL\int_0^L {\frac{{{L^3}}}{3}} + {z^2}Ldz \\ &= kL\left( {\frac{{z{L^3}}}{3} + \frac{{{z^3}L}}{3}}\right)_0^L \\ &= \frac{{2k{L^5}}}{3} \\ \end{aligned} \)

The required graph is:

Apply symmetry because we're dealing with a cube. As a result, we reach the following conclusion:

\[{{\rm{I}}_{\rm{x}}}{\rm{ = }}{{\rm{I}}_{\rm{y}}}{\rm{ = }}{{\rm{I}}_{\rm{z}}}{\rm{ = }}\frac{{{\rm{2k}}{{\rm{L}}^{\rm{5}}}}}{{\rm{3}}}\]

Therefore, the moments of inertia for a cube is \[{{\rm{I}}_{\rm{x}}}{\rm{ = }}{{\rm{I}}_{\rm{y}}}{\rm{ = }}{{\rm{I}}_{\rm{z}}}{\rm{ = }}\frac{{{\rm{2k}}{{\rm{L}}^{\rm{5}}}}}{{\rm{3}}}\].

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.