Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q6E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 713
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Sketch the region whose area is given by the integral and evaluate the integral.

\(\int\limits_{{\rm{\pi /2}}}^{\rm{\pi }} {\int\limits_{\rm{0}}^{{\rm{2 sin\theta }}} {{\rm{r dr d\theta }}} } \)

\(\int\limits_{\pi /2}^\pi {\int\limits_0^{2\sin \theta } {r{\rm{ }}dr{\rm{ }}d\theta } } = \frac{\pi }{2}\)

See the step by step solution

Step by Step Solution

Step 1: Introduction.

The given integral is,

\(I = \int\limits_{\pi /2}^\pi {\int\limits_0^{2\sin \theta } {r{\rm{ }}dr{\rm{ }}d\theta } } \)

Step 2: Evaluate the integral.

Integrating first on \(r\), we get

\(\begin{array}{l}I = \int\limits_{\pi /2}^\pi {\frac{1}{2}} \left. {{r^2}} \right|_0^{2\sin \theta }d\theta \\ = \int\limits_{\pi /2}^\pi {\frac{1}{2}} \left( {{2^2}{{\sin }^2}\theta - {0^1}} \right)d\theta \\ = \int\limits_{\pi /2}^\pi {2{{\sin }^2}\theta } {\rm{ }}d\theta \\{\sin ^2}\theta = \frac{{1 - \cos \left( {2\theta } \right)}}{2}\\\int\limits_{\pi /2}^\pi {2{{\sin }^2}\theta } {\rm{ }}d\theta = \int\limits_{\pi /2}^\pi {1 - \cos \left( {2\theta } \right)} {\rm{ }}d\theta \end{array}\)

Integrating on \(\theta \), we get

\(\begin{array}{l}I = \theta - \frac{1}{2}\sin \left. {2\theta } \right|_{\pi /2}^\pi \\ = \left( {\pi - 0} \right) - \left( {\frac{\pi }{2} - 0} \right)\\ = \pi - \frac{\pi }{2}\\ = \frac{\pi }{2}\end{array}\)

Step 3: Sketch the region.

The region R whose area is given by \(I = \int\limits_{\pi /2}^\pi {\int\limits_0^{2\sin \theta } {r{\rm{ }}dr{\rm{ }}d\theta } } \) is

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.