Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q8E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 713
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Evaluate the given integral by changing to polar coordinates.\(\iint_{\text{R}} {\left( {{\text{2x - y}}} \right)}{\text{ dA}}\)

Where \({\rm{R}}\)is the region in the first quadrant enclosed by the circle\({{\rm{x}}^2}{\rm{ + }}{{\rm{y}}^2}{\rm{ = }}4\)and the lines\({\rm{x = 0 and y = x}}\).

Thus, the value is \(\int_R {(2x - }y){\text{ }}dA = \left( {\frac{{16}}{3} - 4\sqrt 2 } \right)\)

See the step by step solution

Step by Step Solution

Step 1: Given information.

It is given that,

Where \(R\)is the region in the first quadrant enclosed by the circle\({x^2} + {\rm{ }}{y^2} = {\rm{ }}4\)and the lines\(x{\rm{ }} = {\rm{ }}0{\rm{ }}and{\rm{ }}y{\rm{ }} = {\rm{ }}x\).

Step 2: Evaluate by changing to polar coordinates.

Substitute\(x = r\cos \theta \),\(y = r\sin \theta \), and \(dA = rdrd\theta \).

The equation of circle will be,

\(\begin{array}{l}{x^2} + {\rm{ }}{y^2} = {\rm{ }}4\\ \Rightarrow {\left( {r\cos \theta } \right)^2} + {\left( {r\sin \theta } \right)^2} = 4\\ \Rightarrow {r^2}{\cos ^2}\theta + {r^2}{\sin ^2}\theta = 4\\ \Rightarrow {r^2}\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right) = 4\\{\cos ^2}\theta + {\sin ^2}\theta = 1\\ \Rightarrow {r^2} = 4\\ \Rightarrow r = 2\end{array}\)

So, \(0 \le r \le 2\).

The equation of lines will be,

\(\begin{array}{l}x{\rm{ }} = {\rm{ }}0\\ \Rightarrow r\cos \theta = 0\\ \Rightarrow \cos \theta = 0\\ \Rightarrow \theta = \frac{\pi }{2}\end{array}\)

And

\(\begin{array}{l}y{\rm{ }} = {\rm{ }}x\\ \Rightarrow r\sin \theta = r\cos \theta \\ \Rightarrow \frac{{r\sin \theta }}{{r\cos \theta }} = 1\\ \Rightarrow \tan \theta = 1\\ \Rightarrow \theta = \frac{\pi }{4}\end{array}\)

So, \(\frac{\pi }{4} \le \theta \le \frac{\pi }{2}\).

The value of the integral will be,

\(I = \int\limits_{\pi /4}^{\pi /2} {\int\limits_0^2 {\left( {2r\cos \theta - r\sin \theta } \right) \cdot rdrd\theta } } \)

Integrating on \(r\) we get,

\(\begin{array}{l}I = \int\limits_0^\pi {\left( {2\cos \theta - \sin \theta } \right) \cdot \left( {\frac{1}{3}{r^3}} \right)_0^2d\theta } \\ = \int\limits_0^\pi {\left( {2\cos \theta - \sin \theta } \right) \cdot \left( {\frac{1}{3}\left( {{2^3} - {0^3}} \right)} \right)d\theta } \\ = \frac{8}{3}\int\limits_0^\pi {\left( {2\cos \theta - \sin \theta } \right)d\theta } \end{array}\)

Integrating on \(\theta \) we get,

\(\begin{aligned} I &= \frac{{16}}{3}\left( {\sin \theta } \right)_{\pi /4}^{\pi /2} - \frac{8}{3}\left( { - \cos \theta } \right)_{\pi /4}^{\pi /2}\\ &= \frac{{16}}{3}\left( {\sin \frac{\pi }{2} - \sin \frac{\pi }{4}} \right) + \frac{8}{3}\left( {\cos \frac{\pi }{2} - \cos \frac{\pi }{4}} \right)\\ &= \frac{{16}}{3}\left( {1 - \frac{1}{{\sqrt 2 }}} \right) + \frac{8}{3}\left( {0 - \frac{1}{{\sqrt 2 }}} \right)\\ &= \frac{{16}}{3} - \frac{{16}}{{3\sqrt 2 }} - \frac{8}{{3\sqrt 2 }}\\ &= \left( {\frac{{16}}{3} - \frac{{24}}{{3\sqrt 2 }}} \right)\\ &= \left( {\frac{{16}}{3} - 4\sqrt 2 } \right)\end{aligned}\)

Therefore, \(\iint_R {(2x - }y){\text{ }}dA = \left( {\frac{{16}}{3} - 4\sqrt 2 } \right)\)

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.