Americas
Europe
Q11E
Expert-verified(a) Find the eccentricity, (b) identify the conic, (c) give an equation of the directrix, and (d) sketch the conic.
\({\rm{r = }}\frac{{\rm{2}}}{{{\rm{3 + 3sin\theta }}}}\)
(a) Eccentricity \({\rm{e = 1}}\).
(b) The conic is parabola.
(c) The directrix \({\rm{y = }}\frac{{\rm{2}}}{{\rm{3}}}\).
(a)
If the focus is origin then the Eccentricity \({\rm{e}} \ne {\rm{1}}\)
Directrix \({\rm{x}} = \pm {\rm{d}}\)
\({\rm{r}} = \frac{{{\rm{ed}}}}{{{\rm{1}} \pm {\rm{ecos\theta }}}}\)
If the focus is origin Eccentricity \({\rm{e}} \ne {\rm{1}}\)
Directrix \({\rm{y}} = {\rm{ \pm d}}\)
\(r = \frac{{ed}}{{1 \pm e\sin \theta }}\)
\({\rm{r}} = \frac{{\rm{2}}}{{{\rm{3 + 3sin\theta }}}}\)
Numerator and denominator divided by 3.
\({\rm{r}} = \frac{{{\raise0.7ex\hbox{$2$} \!\mathord{\left/
{\vphantom {2 3}}\right.\kern-\nulldelimiterspace}
\!\lower0.7ex\hbox{$3$}}}}{{{\rm{1 + sin\theta }}}}\)
We can read the coefficient of sin \({\rm{\theta }}\) as the eccentricity, which is \({\rm{e = 1}}\), because the constant term in the denominator is now \({\rm{1}}\).
Thus, Eccentricity \({\rm{e = 1}}\).
(b)
It is known that,
Eccentricity of ellipse is less than \({\rm{1}}\).
Eccentricity of parabola is equal to \({\rm{1}}\).
Eccentricity of hyperbola is greater than \({\rm{1}}\).
Here, Eccentricity is \({\rm{e}} = {\rm{1}}\).
The given conic is a parabola.
(c)
When divide the right term of the given equation by 3.
\(\begin{aligned}{l}{\rm{r}} = \frac{{\rm{2}}}{{{\rm{3 + 3sin\theta }}}}\\{\rm{r}} = \frac{{\frac{{\rm{2}}}{{\rm{3}}}}}{{{\rm{1 + sin\theta }}}}\end{aligned}\)
The equation of form
\({\rm{r}} = \frac{{{\rm{ed}}}}{{{\rm{1 + esin\theta }}}}\)
It is clear that, e=1 is the denominator.
\({\rm{ed}} = \frac{{\rm{2}}}{{\rm{3}}}\)is the numerator.
Substituting e in \({\rm{2nd }}\)equation,
\(\begin{aligned}{c}\left( {\rm{1}} \right){\rm{d}} = \frac{{\rm{2}}}{{\rm{3}}}\\{\rm{d}} = \frac{{\rm{2}}}{{\rm{3}}}\end{aligned}\)
The directrix \({\rm{y}} = \frac{{\rm{2}}}{{\rm{3}}}\).
(d)
The graph of conic is shown below:
94% of StudySmarter users get better grades.
Sign up for free