• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q11E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 535
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

(a) Find the eccentricity, (b) identify the conic, (c) give an equation of the directrix, and (d) sketch the conic.

\({\rm{r = }}\frac{{\rm{2}}}{{{\rm{3 + 3sin\theta }}}}\)

(a) Eccentricity \({\rm{e = 1}}\).

(b) The conic is parabola.

(c) The directrix \({\rm{y = }}\frac{{\rm{2}}}{{\rm{3}}}\).

See the step by step solution

Step by Step Solution

Step 1: Find the eccentricity

(a)

If the focus is origin then the Eccentricity \({\rm{e}} \ne {\rm{1}}\)

Directrix \({\rm{x}} = \pm {\rm{d}}\)

\({\rm{r}} = \frac{{{\rm{ed}}}}{{{\rm{1}} \pm {\rm{ecos\theta }}}}\)

If the focus is origin Eccentricity \({\rm{e}} \ne {\rm{1}}\)

Directrix \({\rm{y}} = {\rm{ \pm d}}\)

\(r = \frac{{ed}}{{1 \pm e\sin \theta }}\)

\({\rm{r}} = \frac{{\rm{2}}}{{{\rm{3 + 3sin\theta }}}}\)

Numerator and denominator divided by 3.

\({\rm{r}} = \frac{{{\raise0.7ex\hbox{$2$} \!\mathord{\left/

{\vphantom {2 3}}\right.\kern-\nulldelimiterspace}

\!\lower0.7ex\hbox{$3$}}}}{{{\rm{1 + sin\theta }}}}\)

We can read the coefficient of sin \({\rm{\theta }}\) as the eccentricity, which is \({\rm{e = 1}}\), because the constant term in the denominator is now \({\rm{1}}\).

Thus, Eccentricity \({\rm{e = 1}}\).

Step 2: Identify the conic.

(b)

It is known that,

Eccentricity of ellipse is less than \({\rm{1}}\).

Eccentricity of parabola is equal to \({\rm{1}}\).

Eccentricity of hyperbola is greater than \({\rm{1}}\).

Here, Eccentricity is \({\rm{e}} = {\rm{1}}\).

The given conic is a parabola.

Step 3: Equation of the directrix.

(c)

When divide the right term of the given equation by 3.

\(\begin{aligned}{l}{\rm{r}} = \frac{{\rm{2}}}{{{\rm{3 + 3sin\theta }}}}\\{\rm{r}} = \frac{{\frac{{\rm{2}}}{{\rm{3}}}}}{{{\rm{1 + sin\theta }}}}\end{aligned}\)

The equation of form

\({\rm{r}} = \frac{{{\rm{ed}}}}{{{\rm{1 + esin\theta }}}}\)

It is clear that, e=1 is the denominator.

\({\rm{ed}} = \frac{{\rm{2}}}{{\rm{3}}}\)is the numerator.

Substituting e in \({\rm{2nd }}\)equation,

\(\begin{aligned}{c}\left( {\rm{1}} \right){\rm{d}} = \frac{{\rm{2}}}{{\rm{3}}}\\{\rm{d}} = \frac{{\rm{2}}}{{\rm{3}}}\end{aligned}\)

The directrix \({\rm{y}} = \frac{{\rm{2}}}{{\rm{3}}}\).

Step 4: Graph of the conic.

(d)

The graph of conic is shown below:

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.