Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q14E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 522
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Identify the curve by finding a Cartesian equation for the curve.

\({\rm{\theta = }}{{\rm{\pi }} \mathord{\left/

{\vphantom {{\rm{\pi }} 3}} \right.

\kern-\nulldelimiterspace} 3}\)

The curve is\({\rm{y = }}\sqrt {\rm{3}} {\rm{x}}\).

See the step by step solution

Step by Step Solution

Step 1: Find a Cartesian equation for the curve and use it to identify it.

Given: \({\rm{\theta = }}\frac{{\rm{\pi }}}{{\rm{3}}}\)

Take the tan from both sides and combine them.

\({\rm{tan\theta = tan}}\frac{{\rm{\pi }}}{{\rm{3}}}\)

Known value, \({\rm{tan\theta = }}\frac{{{\rm{sin\theta }}}}{{{\rm{cos\theta }}}}\)

\(\frac{{{\rm{sin\theta }}}}{{{\rm{cos\theta }}}}{\rm{ = }}\sqrt {\rm{3}} \)

Both the numerator and denominator should be multiplied by\({\rm{r}}\).

\(\frac{{{\rm{rsin\theta }}}}{{{\rm{rcos\theta }}}}{\rm{ = }}\sqrt {\rm{3}} \)

Keep in mind that: \({\rm{rcos\theta = x\& rsin\theta = y}}\)

\(\begin{aligned}{l}\frac{{\rm{y}}}{{\rm{x}}}{\rm{ = }}\sqrt {\rm{3}} \\{\rm{y = }}\sqrt {\rm{3}} {\rm{x}}\end{aligned}\)

Step 2: Result.

Therefore, the curve is\({\rm{y = }}\sqrt {\rm{3}} {\rm{x}}\).

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.