Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q19E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 528
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Find the area of the region that lies inside the first curve and outside the second curve.

\({\rm{r = 2cos\theta ,}}\;\;\;{\rm{r = 1}}\).

The area is \(\frac{{\rm{\pi }}}{{\rm{3}}}{\rm{ + }}\frac{{\sqrt {\rm{3}} }}{{\rm{2}}}\).

See the step by step solution

Step by Step Solution

Step 1: Explanation of solution.

Inside \({\rm{r = 2cos\theta }}\) (Green graph)

Outside \({\rm{r = 1}}\) (Bink graph)

Find for intersection

\(\begin{aligned}{c}{\rm{2cos\theta = 1}}\\{\rm{cos\theta = }}\frac{{\rm{1}}}{{\rm{2}}}\\{\rm{\theta = }}\frac{{\rm{\pi }}}{{\rm{3}}}{\rm{, - }}\frac{{\rm{\pi }}}{{\rm{3}}}\end{aligned}\)

Double the integral from \({\rm{0}}\) to \(\frac{{\rm{\pi }}}{{\rm{3}}}\) and symmetry.

Step 2: Calculation.

Take the inner curves \({{\rm{r}}^{\rm{2}}}\) and subtract them from the outer curves \({{\rm{r}}^{\rm{2}}}\).

\(\begin{aligned}{c}{\rm{A = 2 \times }}\frac{{\rm{1}}}{{\rm{2}}}\int_{\rm{a}}^{\rm{b}} {\left( {{\rm{r}}_{\rm{1}}^{\rm{2}}{\rm{ - r}}_{\rm{2}}^{\rm{2}}} \right)} {\rm{d\theta }}\\{\rm{ = }}\int_{\rm{0}}^{{\rm{\pi /3}}} {\left( {{{{\rm{(2cos\theta )}}}^{\rm{2}}}{\rm{ - }}{{\rm{1}}^{\rm{2}}}} \right)} {\rm{d\theta }}\\{\rm{ = }}\int_{\rm{0}}^{{\rm{\pi /3}}} {\left( {{\rm{4co}}{{\rm{s}}^{\rm{2}}}{\rm{\theta - 1}}} \right)} {\rm{d\theta }}\end{aligned}\)

\({\rm{ = }}\int_{\rm{0}}^{{\rm{\pi /3}}} {\left( {{\rm{4}}\left( {\frac{{\rm{1}}}{{\rm{2}}}{\rm{(1 + cos2\theta )}}} \right){\rm{ - 1}}} \right)} {\rm{d\theta }}\) Power reduction formula

\({\rm{ = }}\int_{\rm{0}}^{{\rm{\pi /3}}} {{\rm{(2 + 2cos2\theta - 1)}}} {\rm{d\theta }}\)

\(\begin{aligned}{l}{\rm{ = }}\int_{\rm{0}}^{{\rm{\pi /3}}} {{\rm{(1 + 2cos2\theta )}}} {\rm{d\theta }}\\{\rm{ = }}\left( {{\rm{\theta + 2 \times }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{sin2\theta }}} \right)_{\rm{0}}^{{\rm{\pi /3}}}\\{\rm{ = }}\left( {\frac{{\rm{\pi }}}{{\rm{3}}}{\rm{ + }}\frac{{\sqrt {\rm{3}} }}{{\rm{2}}}{\rm{ - (0 + 0)}}} \right)\\{\rm{ = }}\frac{{\rm{\pi }}}{{\rm{3}}}{\rm{ + }}\frac{{\sqrt {\rm{3}} }}{{\rm{2}}}.\end{aligned}\)

Therefore the area is \(\frac{{\rm{\pi }}}{{\rm{3}}}{\rm{ + }}\frac{{\sqrt {\rm{3}} }}{{\rm{2}}}\).

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.