Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q25E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 528
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Find the area of the region that lies inside both curves.

\({\rm{r = sin2\theta ,r = cos2\theta }}\)

The resulting area of the zone between the two curves\(\frac{{\rm{\pi }}}{{\rm{2}}}{\rm{ - 1}}\).

See the step by step solution

Step by Step Solution

Step 1: Polar region.

As shown, there are nine intersection locations, one at the pole and the other eight in each quadrant. By setting the two equations equal to each other, we can determine one of the remaining eight (at least its\({\rm{\theta }}\)-value).

\(\begin{aligned}{c}{\rm{sin2\theta = cos2\theta }}\\\frac{{{\rm{sin2\theta }}}}{{{\rm{cos2\theta }}}}{\rm{ = 1}}\\{\rm{tan2\theta = 1}}\\{\rm{2\theta = ta}}{{\rm{n}}^{{\rm{ - 1}}}}{\rm{1}}\\{\rm{2\theta = }}\frac{{\rm{\pi }}}{{\rm{4}}}\\{\rm{\theta = }}\frac{{\rm{\pi }}}{{\rm{8}}}\end{aligned}\)

The sought-after territory is divided into eight divisions. Each quadrant has two such portions, each of which resembles an elongated and "pointed" ellipse.

Because each portion has the same area, we may find the area of this region by multiplying the area of one section by eight. To calculate the area of a single section, take the area of the polar region from the blue curve from 0 to\({\rm{\pi /8}}\) and multiply it by the area of the polar region from the purple curve from to. However, the area of the polar region from the purple curve\({\rm{\pi /8}}\) to\({\rm{\pi /4}}\) is identical to the area of the polar region from the blue curve\({\rm{\pi /8}}\) to \({\rm{\pi /4}}\).

Step 2: Resulting.

Polar region

\(\begin{aligned}{c}{\rm{A = }}\frac{{\rm{1}}}{{\rm{2}}}\int_{\rm{0}}^{{\rm{\pi /8}}} {{{{\rm{(sin2\theta )}}}^{\rm{2}}}} {\rm{d\theta + }}\frac{{\rm{1}}}{{\rm{2}}}\int_{{\rm{\pi /8}}}^{{\rm{\pi /4}}} {{{{\rm{(cos2\theta )}}}^{\rm{2}}}} {\rm{d\theta }}\\{\rm{ = 2 \times }}\frac{{\rm{1}}}{{\rm{2}}}\int_{\rm{0}}^{{\rm{\pi /8}}} {{{{\rm{(sin2\theta )}}}^{\rm{2}}}} {\rm{d\theta }}\\{\rm{ = }}\int_{\rm{0}}^{{\rm{\pi /8}}} {{\rm{si}}{{\rm{n}}^{\rm{2}}}} {\rm{2\theta d\theta }}\\{\rm{ = }}\int_{\rm{0}}^{{\rm{\pi /8}}} {\frac{{\rm{1}}}{{\rm{2}}}} {\rm{(1 - cos4\theta )d\theta }}\\{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}\left( {{\rm{\theta - }}\frac{{\rm{1}}}{{\rm{4}}}{\rm{sin4\theta }}} \right)_{\rm{0}}^{{\rm{\pi /8}}}\\{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}\left( {\frac{{\rm{\pi }}}{{\rm{8}}}{\rm{ - }}\frac{{\rm{1}}}{{\rm{4}}}{\rm{(1)}}} \right)\end{aligned}\)

\({\rm{ = }}\frac{{\rm{\pi }}}{{{\rm{16}}}}{\rm{ - }}\frac{{\rm{1}}}{{\rm{8}}}\)

Therefore the resulting region of the area is

\(\begin{aligned}{c}{\rm{A = 8}}\left( {\frac{{\rm{\pi }}}{{{\rm{16}}}}{\rm{ - }}\frac{{\rm{1}}}{{\rm{8}}}} \right)\\{\rm{ = }}\frac{{\rm{\pi }}}{{\rm{2}}}{\rm{ - 1}}\end{aligned}\)

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.