Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q2E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 522
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Plot the point whose polar coordinates are given. Then find two other pairs of polar coordinates of this point, one with \(r > 0\)and one with \(r < 0\).

\(\begin{aligned}{l}(a)(1,7\pi /4)\\(b)( - 3,\pi /6)\\(c)(1, - 1)\end{aligned}\)

  1. The other two coordinates are\((1, - \frac{\pi }{4}),( - 1,\frac{{3\pi }}{4})\)
  2. The other two coordinates are\(( - 3,\frac{{13\pi }}{6}),(3,\frac{{7\pi }}{6})\)
  3. The other two coordinates are\((1,2\pi - 1),( - 1,\pi - 1)\)
See the step by step solution

Step by Step Solution

Step 1: Plotting the points

  1. The polar plot for the point\((1,\frac{{7\pi }}{4})\) is shown below:

The coordinates \((r,\theta + 2n\pi ){\rm{ and }}(r,\theta )\)represent the same point.

Another coordinates for this point are\(\left( {1,\frac{{7\pi }}{4} - 2\pi } \right) = \left( {1, - \frac{\pi }{4}} \right)\)

The coordinates \(( - r,\theta + (2n + 1)\pi ){\rm{ and }}(r,\theta )\)represent the same point.

Another coordinates for this point are \(\left( { - 1,\frac{{7\pi }}{4} - \pi } \right) = \left( { - 1,\frac{{3\pi }}{4}} \right)\)

Step 2: Plotting the points

b. The polar plot for the point\(( - 3,\frac{\pi }{6})\)is shown below:

The coordinates \((r,\theta + 2n\pi ){\rm{ and }}(r,\theta )\)represent the same point.

Another coordinates for this point are\(\left( { - 3,\frac{\pi }{6} + 2\pi } \right) = \left( { - 3,\frac{{13\pi }}{6}} \right)\)

The coordinates \(( - r,\theta + (2n + 1)\pi ){\rm{ and }}(r,\theta )\)represent the same point.

Another coordinates for this point are \(\left( {3,\frac{\pi }{6} + \pi } \right) = \left( {3,\frac{{7\pi }}{6}} \right)\)

Step 2: Plotting the points

(c)The polar plot for the point\((1, - 1)\) is shown below:

The coordinates \((r,\theta + 2n\pi ){\rm{ and }}(r,\theta )\)represent the same point.

Another coordinates for this point are\((1,2\pi - 1)\)

The coordinates \(( - r,\theta + (2n + 1)\pi ){\rm{ and }}(r,\theta )\)represent the same point.

Another coordinates for this point are \(( - 1,\pi - 1)\)

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.