Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q4E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 522
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Plot the point whose polar coordinates are given. Then find the Cartesian coordinates of the point.

\(\begin{aligned}{l}(a)( - \sqrt 2 ,5\pi /4)\\(b)(1,5\pi /2)\\(c)(2, - 7\pi /6)\end{aligned}\)

(a)\((x,y) = (1,1)\)

(b)\((x,y) = (0,1)\)

(c)\((x,y) = ( - \sqrt 3 ,1)\)

See the step by step solution

Step by Step Solution

Step 1: Convert polar coordinate to rectangular coordinate

\(\begin{aligned}{l}x &= r\cos \theta = - \sqrt 2 \cos \left[ {\frac{{5\pi }}{4}} \right] = \sqrt 2 \cos \left[ {\frac{{5\pi }}{4} - \pi } \right] = \sqrt 2 \cos \left[ {\frac{\pi }{4}} \right] = \sqrt 2 \times \frac{1}{{\sqrt 2 }} = 1\\y = r\sin \theta &= - \sqrt 2 \sin \left[ {\frac{{5\pi }}{4}} \right] = \sqrt 2 \sin \left[ {\frac{{5\pi }}{4} - \pi } \right] = \sqrt 2 \sin \left[ {\frac{\pi }{4}} \right] = \sqrt 2 \times \frac{1}{{\sqrt 2 }} = 1\end{aligned}\)

Remember that:

\(\begin{aligned}{l}\sin (\pi - \theta ) &= \sin \theta \\\cos (\pi - \theta ) &= - \cos \theta \end{aligned}\)

The point\((1,1)\) is plotted on the graph below:

Step 2: Convert polar coordinate to rectangular coordinate

\(\begin{aligned}{l}x &= r\cos \theta = 2\cos \left[ { - \frac{{7\pi }}{6}} \right] = - 2\cos \left[ {\pi - \frac{{7\pi }}{6}} \right] = - 2\cos \left[ { - \frac{\pi }{6}} \right] = - 2\cos \left[ {\frac{\pi }{6}} \right] = - 2 \times \frac{{\sqrt 3 }}{2} = - \sqrt 3 \\y &= r\sin \theta = 2\sin \left[ { - \frac{{7\pi }}{6}} \right] = - 2\sin \left[ {\pi - \frac{{7\pi }}{6}} \right] = - 2\sin \left[ { - \frac{\pi }{6}} \right] = 2\sin \left[ {\frac{\pi }{6}} \right] = 2 \times \frac{1}{2} = 1\end{aligned}\)

Remember that:

\(\begin{aligned}{l}\sin (\pi + \theta ) &= - \sin \theta \\\cos (\pi + \theta ) &= - \cos \theta \end{aligned}\)

And that:

\(\begin{aligned}{l}\sin ( - \theta ) &= - \sin \theta \\\cos ( - \theta ) &= \cos \theta \end{aligned}\)

The point\(( - \sqrt 3 ,1)\) is plotted on the graph below:

Step 3: Convert polar coordinate to rectangular coordinate

\(\begin{aligned}{l}x &= r\cos \theta = 2\cos \left[ { - \frac{{7\pi }}{6}} \right] = - 2\cos \left[ {\pi - \frac{{7\pi }}{6}} \right] = - 2\cos \left[ { - \frac{\pi }{6}} \right] = - 2\cos \left[ {\frac{\pi }{6}} \right] = - 2 \times \frac{{\sqrt 3 }}{2} = - \sqrt 3 \\y &= r\sin \theta = 2\sin \left[ { - \frac{{7\pi }}{6}} \right] = - 2\sin \left[ {\pi - \frac{{7\pi }}{6}} \right] = - 2\sin \left[ { - \frac{\pi }{6}} \right] = 2\sin \left[ {\frac{\pi }{6}} \right] = 2 \times \frac{1}{2} = 1\end{aligned}\)Remember that:

\(\begin{aligned}{l}\sin (\pi + \theta ) &= - \sin \theta \\\cos (\pi + \theta ) &= - \cos \theta \end{aligned}\)

And that:

\(\begin{aligned}{l}\sin ( - \theta ) &= - \sin \theta \\\cos ( - \theta ) &= \cos \theta \end{aligned}\)

The point\(( - \sqrt 3 ,1)\)is plotted on the graph below:

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.