Americas
Europe
Q5E
Expert-verifiedWrite a polar equation of a conic with the focus at the origin and the given data.
Parabola, vertex \({\rm{(4,3}}\pi {\rm{/2)}}\)
Polar equation of a conic with the focus at the origin and the parabola, vertex \(\left( {{\rm{4,}}\frac{{{\rm{3}}\pi }}{{\rm{2}}}} \right)\).
Parabola with vertex \(\left( {{\rm{4,}}\frac{{{\rm{3}}\pi }}{{\rm{2}}}} \right)\).
\(\begin{aligned}{l}{\rm{r = }}\frac{{{\rm{ed}}}}{{{\rm{1 \pm ecos\theta }}}},\;\;\\{\rm{r = }}\frac{{{\rm{ed}}}}{{{\rm{1 \pm esin\theta }}}}\end{aligned}\)
\(e = 1\)
Pole and vertex \(\left( {{\rm{4,}}\frac{{{\rm{3}}\pi }}{{\rm{2}}}} \right)\)
Vertex is at the same distance from the foci as from the Directrix \({\rm{d = 2 \times 4 = 8}}\)
Polar Equation is,
\(\begin{aligned}{c}{\rm{r = }}\frac{{{\rm{ed}}}}{{{\rm{1 - esin\theta }}}}\\{\rm{ = }}\frac{{\rm{8}}}{{{\rm{1 - sin\theta }}}}\end{aligned}\)
\({\rm{ = }}\frac{{\rm{8}}}{{{\rm{1 - sin\theta }}}}\)
94% of StudySmarter users get better grades.
Sign up for free