Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q32E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 656
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Determine the rate of change of volume when \(r = 120in\)and \(h = 140in\).

The rate of change of volume is\(\frac{{dV}}{{dt}} = 8160\pi {\rm{i}}{{\rm{n}}^3}/{\rm{s}}\).

See the step by step solution

Step by Step Solution

Step 1: Chain rule

"Suppose that \(z = f(x,y)\) is a differentiable function of \(x\) and \(y\), where \(x = g(t)\) and \(y = h(t)\) are both differentiable functions of \(t\). Then, \(z\) is differentiable function of \(t\) and\(\frac{{dz}}{{dt}} = \frac{{dz}}{{dx}} \cdot \frac{{dx}}{{dt}} + \frac{{dz}}{{dy}} \cdot \frac{{dy}}{{dt}}\)

Step 2: Estimate the rate of change of volume

The volume of a cone is \(V = \frac{1}{3}\pi {r^2}h\) where, \(r\) is the radius and \(h\) is height.

By using chain rule, obtain the value of \(\frac{{dV}}{{dt}}\)

\(\begin{aligned}{l}\frac{{dV}}{{dt}} = \frac{\partial }{{\partial r}}\left( {\frac{1}{3}\pi {r^2}h} \right)\frac{{dr}}{{dt}} + \frac{\partial }{{\partial h}}\left( {\frac{1}{3}\pi {r^2}h} \right)\frac{{dh}}{{dt}}\\\frac{{dV}}{{dt}} = \frac{1}{3}\pi h\frac{\partial }{{\partial r}}\left( {{r^2}} \right)\frac{{dr}}{{dt}} + \frac{1}{3}\pi {r^2}\frac{\partial }{{\partial h}}(h)\frac{{dh}}{{dt}}\\\frac{{dV}}{{dt}} = \frac{1}{3}\pi h(2r)\frac{{dr}}{{dt}} + \frac{1}{3}\pi {r^2}(1)\frac{{dh}}{{dt}}\\\frac{{dV}}{{dt}} = \frac{2}{3}\pi rh\frac{{dr}}{{dt}} + \frac{1}{3}\pi {r^2}\frac{{dh}}{{dt}}\end{aligned}\)

Substitute \(r = 120{\rm{in}},h = 140{\rm{in}},\frac{{dr}}{{dt}} = 1.8{\rm{in}}/{\rm{s}}\) and \(\frac{{dh}}{{dt}} = - 2.5{\rm{in}}/{\rm{s}}\) to the above equation,

\(\begin{aligned}{l}\frac{{dV}}{{dt}} = \frac{2}{3}\pi rh\frac{{dr}}{{dt}} + \frac{1}{3}\pi {r^2}\frac{{dh}}{{dt}}\\\frac{{dV}}{{dt}} = \frac{2}{3}\pi (120)(140)(1.8) + \frac{1}{3}\pi {(120)^2}( - 2.5)\\\frac{{dV}}{{dt}} = \frac{{60480}}{3}\pi - \frac{{36000}}{3}\pi \\\frac{{dV}}{{dt}} = 20160\pi - 12000\pi \end{aligned}\)

Simplify further as,\(\frac{{dV}}{{dt}} = 8160\pi \)

Hence,\(\frac{{dV}}{{dt}} = 8160\pi {\rm{i}}{{\rm{n}}^3}/{\rm{s}}\)

Therefore, the rate of change of volume is\(\frac{{dV}}{{dt}} = 8160\pi {\rm{i}}{{\rm{n}}^3}/{\rm{s}}\).

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.