Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q34E

Expert-verified
Essential Calculus: Early Transcendentals
Found in: Page 657
Essential Calculus: Early Transcendentals

Essential Calculus: Early Transcendentals

Book edition 2nd
Author(s) James Stewart
Pages 830 pages
ISBN 9781133112280

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Find the rate of change of \(I\) when \(R = 400\Omega ,I = 0.08A,\frac{{dV}}{{dt}} = - 0.01\;{\rm{V}}/{\rm{s}}\) and \(\frac{{dR}}{{dt}} = 0.03\Omega /{\rm{s}}\).

The current decreases at a rate of\( - 0.000031\;{\rm{A}}/{\rm{s}}\).

See the step by step solution

Step by Step Solution

Step 1: Chain rule

"Suppose that \(z = f(x,y)\) is a differentiable function of \(x\) and \(y\), where \(x = g(t)\) and \(y = h(t)\) are both differentiable functions of \(t\). Then, \(z\) is differentiable function of \(t\) and\(\frac{{dz}}{{dt}} = \frac{{dz}}{{dx}} \cdot \frac{{dx}}{{dt}} + \frac{{dz}}{{dy}} \cdot \frac{{dy}}{{dt}}\)

Step 2: Estimate the rate of change of \(I\)

As given, the Ohm's Law is \(V = IR\) where \(V\) is voltage, / is current and \(R\) is resistance.

The values of \(R = 400\Omega ,I = 0.08A,\frac{{dV}}{{dt}} = - 0.01\;{\rm{V}}/{\rm{s}}\) and\(\frac{{dR}}{{dt}} = 0.03\Omega /{\rm{s}}\).

The Ohm's Law \(V = IR\) can be written as,\(I = \frac{V}{R}\)

By using chain rule, obtain the value of \(\frac{{dI}}{{dt}}\),

\(\begin{aligned}{l}\frac{{dI}}{{dt}} = \frac{{\partial I}}{{\partial V}} \cdot \frac{{dV}}{{dt}} + \frac{{\partial I}}{{\partial R}} \cdot \frac{{dR}}{{dt}}\\\frac{{dI}}{{dt}} = \frac{1}{R}\frac{{dV}}{{dt}} + \left( { - V{R^{ - 2}}} \right)\frac{{dR}}{{dt}}\\\frac{{dI}}{{dt}} = \frac{1}{R}\frac{{dV}}{{dt}} - \frac{V}{{{R^2}}}\frac{{dR}}{{dt}}\end{aligned}\)

Thus,

Substitute \(R = 400\Omega ,I = 0.08A,\frac{{dV}}{{dt}} = - 0.01\;{\rm{V}}/{\rm{s}}\) and \(\frac{{dR}}{{dt}} = 0.03\Omega /{\rm{s}}\) to the above equation,

\(\begin{aligned}{l}\frac{{dI}}{{dt}} = \frac{1}{R}\frac{{dV}}{{dt}} - \frac{I}{R}\frac{{dR}}{{dt}}\\\frac{{dI}}{{dt}} = \frac{1}{{400}}( - 0.01) - \frac{{0.08}}{{400}}(0.03)\\\frac{{dI}}{{dt}} = - \frac{1}{{40000}} - \frac{{24}}{{4000000}}\\\frac{{dI}}{{dt}} = \frac{{ - 100 - 24}}{{4000000}}\end{aligned}\)

Simplify further as follows,

\(\begin{aligned}{l}\frac{{dI}}{{dt}} = \frac{{ - 124}}{{4000000}}\\\frac{{dI}}{{dt}} = - 0.000031\end{aligned}\)

Thus, \(\frac{{dI}}{{dt}} = - 0.000031\;{\rm{A}}/{\rm{s}}\)

Therefore, the current is decreasing at a rate of\( - 0.000031\;{\rm{A}}/{\rm{s}}\).

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.